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Abstract

In this paper, we prove the correspondence theorem for fuzzy
subgroups in homomorphism groups and derive the structure of fuzzy
quotient groups.
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We make appointment as follows: The notations F(X),GF(X) and NGF(X)
are sets of all fuzzy subsets, fuzzy subgroups and fuzzy invariant
subgroups respectively. The definitions[1] of fuzzy quotient group
and fuzzy quotient subgroup were given as follows by Luo in 1986.
Definition 1 Suppose that N ENGF(X). Let

X/N = {aN |a€X}.

We stipulates that alN ° bN = (ab)}!. Then (XIN, ° ) is a group. We
call it fuzzy quotient group of X with respect to N (unit element is

eN=N, (aN)~*=a~'N). |

Definition 2. Suppose that P: X—>X|N is natural homomorphism and H
is fuzzy subgroup of X. Then P(H) is called fuzzy queotient subgroup
of H with respect to N denoted by HIN

It is well-known that in ordinary group theory[3] we have following
conclusions: (1) Suppose that f: X—>X’ be epimorphism.Then subgroups
of X which include Kerf and all subgroups of X’ are correspondent.
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(2)If N@X, then ‘thgre exists only subgroup ﬁ of X such that NCH
and H’= HIN for every subgroup H’ of X/N. Especially, when H'® XN,
HAX and X/N /HIN<X/N. In this paper, we generalize above conclusions
to fuzzy group theory.

Theorem 1. Suppose that f: X—>X’ be epimorphism map, M set of fuzzy
subgroups of X whose membership degreés on Kerf are constant and
M’set of all fuzzy subgroups of X’, that is,

M={H | HCGF(X) and H(x)=a€[0,1], v x€Kerf}, M’'=GF(X’).
Then V. H—f(H) is order-preserving bijective map of M to M’'. When
N €M is fuzzy invariant subgrup of X, N’=f(N) is fuzzy invariant
subgroup of X’and

X/N £ X’IN’.

To prove Theorem 1, we first prove the following Lemma.
Lemma. Suppose that K be invariant subgroup of group X and £I_ fuzzy
subgroup of X. If the membership degree of H on K is constant and
maximal, then the membership degree of H on every coset aK of K
is all constant _Ii (a).

Proof: v REK, H(ak)=zmin{H (a),H(k)}=H(a),

H(a)=H(ak - k")>min{g(ak),ﬁ(k“’)}=min{§(ak),ﬁ(k)}=£(ak)
therefore H(ak)=H(a)

We prove Theorem 1 as follows:

Proof: From Theorem 7 of [1], we know that % is a map of M to M.
For v H' ¢t M'=GF(X’), letﬁ=f"@’). From Theorem 8 of [1], we know
that HCGF(X) and for v a€Kerf

H(a)=f~*(H’)(a)=H’(f(a))=H'(¢’) (constant)

Therefore H M. It is easy to know that

¢ (H)=f(H)=f(f~*(H’))=H".

Y is a epimorphism of M to M’.

Take H. K¢M. If b (H)=%(K) then for v x€X b (H)(¥')=b (K)(x’)
where x’=f(x), that is, f(H)(x’)=f(K)(x’),

sup  H(y)= sup K(v), sup H(y)=sup K(y).
fy)=f(x)=x" f(y)=f(x)=x’ yE€xK T yexK
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Since membership degrees of H ,K on K=Kerf are constant. they are He).

£ (e) and maximal. From Lemma, above equality becomes
H(x)=K(x)

that"is, H=K K. Y is monomorphism.

If HKcM, HCK, then for v x’€X’,
ﬂh(LI)(x’)—f(H)(x’);(srt)p H(x)s sup K(x)

f(x)=x"
=f(K)(x")=% (K)(x’)
Therefore Y (H)SY (K), b is order-preserving.
Summing up, ¥ is order-preserving bijective map.
The other part of Theorem 1 can be obtained from Theorem 7 and
Theorem 8 of [1] directly.
The following Theorem give the structure of fuzzy subgroup of X/N.
Theorem 2. Suppose that N be fuzzy invariant subgroup of group X and
X/ﬂ fuzzy quotient group of X with respect toN. Then for every fuzzy
subgroup H’ of XN, there exists only fuzzy subgroup H such that the
membership degree of H on Ne={x | xEX,ﬁ(x)riY(e)} is constant(H(e))
and H/N=H’. Especially, when _@’ is fuzzy invariant subgroup of X/N, H
is also fuzzy invariant subgroup of X, and
X/N2X/N/H|N. .
Proof: Suppose that P: X—»X IN be natural homemorphism. Then
K=Kerp={x€X | P(x)=N}={x€X | xN=N}={x€X | x € Ne}=Ne.
Let £=P"(E’). Since E’GGF(XQ__V’), from Theorem 1, H is fuzzy
subgroup of X whose membership degree on 'Ne is constant and
H|N=P(H)=P(P~*(H'))=H’.
From Theorem 1, we know that E is only determined by H'. When
H'¢NGF(X|N), HENGF(X) and
X|[BEX(H'/H'-X|N /HIN
If fuzzy invariant subgroup N(=N) is ordinary invariant subgroup,
then Ne=N.Therefore, we have
Corollary. Suppose that N be a ordinary invariant subgroup of X. Then
for every fuzzy invariant subgroup H’' of X|N, there exists only fuzzy
subgroup H of X such that the membership degree of Hon N is
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constant and H /N=E ’

In ordinary group theory, only when subgroup H of X include invariant
subgroup N do we consider quotient group of H with respect to N. For
arbitrary fuzzy subgroup H.: of X Definition 2 define fuzzy quotient
subgroup H,/N. From Theorem 2 we know that H,N must equal certain
_{I [N where membership degree of H on Ne is constant. Therefore we may
only define fuzzy quotient HIN for fuzzy subgroup H whose membership
degree on Ne is constant. This makes H/N and H determined mutually
and identical to ordinary group theory.
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