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1. Introduction

It is shown by the experience of intelligent, control and decision support systems
working out that the classical methods of a multidimensional statistical analysis are often
useless because of their computational complexity and restrictions of the classical probability
scheme [1]. In these cases it is expedient to use non-traditional methods of data processing that
are in most cases based on the theory of fuzzy sets, particularly, on fuzzy measures of Sugeno
[2] and the possibility theory of Zadeh [3].

However, there is a deep connection between the probability theory and the theory of
fuzzy sets. Thus, any fuzzy set can be identified with a random set [4], a membership function
of the fuzzy set coinciding with a cover function of a random set. The probabilistic
interpretation can also be given to upper and lower belief measures in a set-possibilistic model.
Also, we point out the works [5,6,7] where Dubois and Prade, developing the Dempster-
Shafer theory of evidence, offer methods for constructing fuzzy sets upon statistical data.

A set-theoretic method of statistical data investigation proposed in this paper requires
partial ordering of the set of probabilistic distributions. This algebraic structure is formalized
with the help of an idea of a statistical class, introduced below, which can be considered as an
empirical or a posteriori image of a certain probability space. On the set of the statistical
classes inclusion and equality relations as well as inclusion and equality measures are defined. It
enables us to solve the main problem of the given paper - to classify the statistical classes.

2. Basic definitions and problem formulating
Let X be a measurable space of elementary events together with a o-algebra of events

A. We will assume that there is a volume measure ' upon WU satisfying the usual
requirements of non-negativity and additivity. For any 4 €% the meaning of }'(4) can be

interpreted as a power of the set 4 or as a closure of the event 4 to an elementary event.
We are given a probability measure P. The triple F = (X ,%,P) will be called as a

statistical class on X . Thus, any statistical class on X is completely defined by assigning the
probability measure P. We subsequently denote by §={F, |i=1,2,...} a finite or infinite
aggregate of the statistical classes. Let us assume that there is a certain subset
§={8,.,8,,...,8.} of standard classes in §. Then the problem of classification the statistical



classes on the standard ones consists in constructing the inclusion measure y(F, c F,) €[0,1]
upon @ with the help of which for any F' e @ there can be found a classifying vector

(fFcs), FcS,), .., FcS,)).

Consider a set A(p)={4 W |P(4)=p} of p-probable events. An event E e A(p) is
called the minimal event (m.e.) for a class F if the condition V (E) = } elfllg }V(A) holds. The
A

set of all m.e. for a class F will be denoted as M. It should be emphasized that m.e. £ ¢ M
give us in a certain sense the most "accurate" description of the statistical class.

We will subsequently assume that probability measure P is absolutely continuous
regarding a volume measure V. It means that for any class F @ there is the probability
density function A(x), x € X, connecting the volume and probability measures, i.e.

P(4)= j h(x)dV (x) .

Also, we will assume that the volume measure ¥ is continuous in regard to its values,
that is if 4 € and V' (A4) =a then for an arbitrary b €[0,a] there exists B €% such as
Bc A and V(B) = b. The continuous property of a probability measure regarding a volume
measure gives us a possibility to introduce definitions of the inclusion and the equality of
events in a volume measure. Namely, 4 C B in measure V for any 4,B ¢ ¥ if and only if
V(A\B)=0. Then A= B in measure ¥ when both 4 < B and B A4 in measure V.

3. Description .of the minimal events set

We first establish a lemma that gives us a characteristic property of m.e.
Lemma 1. Let E €M, V(E) =a and B(a) is the set of events of the volume a, i.e.

B(a)={A ¥ |V(4A)=a}. Then P(E)= Sup P(A).
Thus, the result of the lemma shows that m.e. are the most probable among the events

of the same volume. The following lemma establishes an important class of m.e.
Lemma_2. For any a > 0 the event E = {x € X | h(x) 2 a} is minimal.

The fundamental set of m.e. is the set of events E(a)={x € X | h(x) > a}. It is not
hard to see that the events £(a) are linearly ordered regarding to the inclusion operation.

The concept of the fundamental set of m.e. causes a natural question: does the
fundamental set of m.e. coincide with the set of all m.e. or not ? That is whether it is possible

to represent an arbitrary m.e. in the form {x € X | #(x) > a} with a certain a. The following

results answer this question.
Consider an event C €. The least upper bound Lub(C) is defined as Lub(C)=

=sup{a|Cc E(a)}. Note that in this definition C < E(a) means the inclusion C into
E(a) in measure V, ie. V(C\E(a))=0. We also introduce the following notations:
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int E(@)={x e X |h(x)>a}; bdE(a)={xeX|h(x)=a}. Thus, the equality
E(a)=int E(a)ubd E(a) holds.

Lemma_3. Let for me. C Lub(C) = a. Then int E(a) c C in measure V.

The following theorem gives a description of the structure of an arbitrary m.e.
» Theorem_1. Let C € M and Lub(C) = a. Then
1) if a>0 then C=int E(a) U A, where A cbd E(a); conversely, for any a> 0 the event
C=itE(a)udisme.;
2) if a=0 then C = int E(0); conversely, int E(0) is m.e.

Now we establish a feature of equiprobable m.e. that we state as a lemma.

Lemma 4. Let C,,C,eM and P(C,)=P(C,), then there is an equality
Lub(C,) = Lub(C,). .

Let p €[0,1], then as the probability measure is continuous regarding its values the set
A(p) of the equiprobable events is not empty. Consequently, the set of the equiprobable m.e.
is also not empty. The following theorem establishes conditions for the p-probable m.e. to be
unique in measure ¥ for any p €[0,1].

Theorem_2. Any m.e. is determined by its probabiligz uniquely if and only if for any
a the equality P(bd E (a)) = 0 holds.

It is obvious, that when satisfying the conditions of the theorem the set of all m.e. M
coincides with the fundamental set. A statistical class F e @ is called regular if each m.e. in it
is defined by its probability uniquely. Note that the set of m.e. M of the regular class F
coincides with the fundamental set.

Theorem_3. The fundamental set of m.e. determines each statistical class uniquely.

4. Set-theoretic operations on statistical classes. Inclusion and equality measures

We shall first consider regular statistical classes. Let F, and F, be regular statistical
classes from &; 4, (p) and 4, (p) - equiprobable with the probability p m.e. that correspond
to the classes F, and F,. Informally the probability p gives us representativity estimation of
the m.e. 4,(p) and A4,(p) when describing the classes F, and F,. These events possess an
important extremal property since they are the least events with a given probability. That is
why when defining set-theoretic operations and relations on statistical classes we take as a
basis the corresponding operations on m.e.

We define F,c F, if and only if for any pe[0,1] there is the inclusion
A/ (p)c 4,(p) in measure V; F, = F, if A, (p)= A4,(p) in measure V for any p €[0,1].
The union of classes F| and F, is a class F, = F; UF, such that for any p €[0,1] there is
A,(p) = 4,(p)w A,(p). The intersection of classes F, and F, is a class F, = F, " F, such
that the equality 4, (p) = 4, (p) " 4, (p) holds for any p €[0,1].

To classify the statistical classes we construct an appropriate inclusion measure y. Let
F,F, € ® be regular statistical classes. Given p €[0,1] we define p-local inclusion measure
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of F, into F, as y,(F, c F,) = P[4,(p)|4, (p)), that is the conditional probability of the
event 4, (p) occurrence provided that the event 4, (p) has taken place in measure P,. Note
that the p-local measure possesses all required properties of a measure.

Meanwhile, it is more useful to introduce an integral inclusion measure (or simply an

inclusion measure) y(F, c F, ), that can be defined on the basis of the p-local measure:

1 1
WF cF)=[y,(F, cF)2p)dp =2[ B[ 4,(p)| 4, (p)]pdp ,
0 0
where 2 p is a normalization factor. The equality measure we define such that
WF, =F)=min{y(F, cF), WF, cR)}.
Theorem_4. For arbitrary regular statistical classes F, ,F, € § we have:
D) W(F,cF)=1ifandonlyif F,c F,; 2) Y(F,=F,)=1ifandonlyif F, = F,.

The formula of the inclusion measure can be transformed to the form that is more
convenient for practical calculations. Let y(z) be the function that equals 1, if z>0, and

equals 0, otherwise. We introduce a value

2(x) = B[E(R(®)]= [RO) B () - RV (»), i=12,

that has a sense of the probability of m.e. from M, whose density is not less than A(x),
i =1,2. Then we can show that

W(F c F)=2[h(x)min{p, (x), , (x)}aV (x),

where u, (x) =1- 7 (x), u,(x) =1~ 2,(x). The function u(x) has a profound sense when
representing statistical class F by a fuzzy set. This will be discussed below.

S. Fuzzy representation of the regular statistical classes
Consider the function u(x) = 1- 2(x) of a regular statistical class F € @&.
Lemma_5. Forany p>0 A(l —p) = {x eX|u(x)z p}.
It is obvious that the function u(x) determines each statistical class uniquely. A class
F €@ can be considered as a fuzzy subset of the space X with a membership function u(x).
Let F,,F, € @. Then, if F, = F, UF, then pq (x) = max{u, (x), 4, (x)}, andif F, = F, N F,,
then g (x) = min {,ul(x), He (x)}. Thus, stated above set-theoretic operations on statistical

classes coincide with the traditional operations in the theory of fuzzy sets [8].
It is known [9], that we can consider probabilities of fuzzy events in the measurable
space X with the probability measure P. For a fuzzy event F with a membership function
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H#(x): X —[0,1] the probability P(F) is defined by the formula P(F) = j,u(x)dP(x).
X
Let F|,F, € @ be regular statistical classes. Then P,(F;) = 0.5 and

. P(FNE)
W, & F) =2 min, (9.0 (1}, 09 =28 (E 0 ) = L) < ).
X 1 1
Thus, the inclusion measure has a sense of the conditional probability of the fuzzy event F,

occurrence provided that the fuzzy event F, has taken place in measure P,.
6. Inclusion relation and inclusion measure for irregular statistical classes

In the section 4 we defined set-theoretic operations and relations for regular statistical
classes. However, real probability distributions often provide statistical classes that do not
possess the mentioned property. Such classes we will call irregular classes. As examples we
can mention discrete, discrete-continuous and even purely continuous distributions of random
values, whose probability density function has constancy domains of a non-zero measure. The
irregularity of a class becomes apparent when its m.e. are determined not uniquely, or do not
exist for certain probabilities!. We shall consider a general method of defining set-theoretic
operations and relations on the whole set of statistical classes § (including irregular classes).

Let us extend the set of m.e. M with fuzzy events, i.e. with such events £ with a
membership function u;(x): X —{0,1], whose probability P(E) and volume V(E) are

defined by the expressions P(E)=J./1E(x)dP(x), V(E)= j Hp(x)dV(x), and with it
X X

over all p-probable
fuzzy events A

V(E)= inf  V(A). The following lemma describes membership functions of fuzzy m.e.

Lemma_6. The event E(a,q) with the membership function

1, xeintE(a),
g (x)=3q, xebdE(a), a>0, q €[0,1],
0, x ¢E(a),
is the fuzzy minimal event for a certain q.
1t is not hard to see that if bd £(a) equals zero in measure 7, then the proved lemma
gives us a description of ordinary (not fuzzy) m.e. We consider by analogy the m.e. E( a,q)

described in lemma_6 to belong to the fundamental set of fuzzy m.e. These events can be taken
as a basis to define set-theoretic operations on arbitrary statistical class.
Lemma_7. The fuzzy m.e. with probability p €[0,1] from the fundamental set of fuzzy

1 Here and below it is not assumed that the volume measure is obligatory continuous in regard to its
vaues (authors' remark).
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m.e. is determined uniquely.

Because of proved uniqueness of constructing fuzzy m.e. from the fundamental set each
such an event is completely determined by its probability p. Therefore, it can be denoted as
A(p). This allows us to introduce an inclusion relation and inclusion measure of statistical
classes in just the same way as in the section 4, but however taking into account that m.e.
might be fuzzy. We will use the classical min- and max-operations on fuzzy sets.

Let ® ={4,(p)} and ®,={4,(p)} be the fundamental set of fuzzy m.e.
corresponding to statistical classes F, and F, respectively. We shall take by definition that
F, C F, if and only if for any p €[0,1] the inclusion 4,(p) < 4,(p) takes place in measure

V . The inclusion measure of statistical classes is defined by the formula

W(F, € F,) =2 B[ 4,(p)|4,(p)]pdp = 2| B[ 4 (p) " 4, (P)]dp.

7. Relation and measure of a possibilistic inclusion
Let a fuzzy set F be normal. Then in the possibilistic model the function u(x) is
interpreted as a function of a possibility distribution. With the help of this function for any

A €M we can express the necessity measure NESS(4)= u;tA‘ (1- p(x)) and the possibility

measure POSS(A) = sup H(x).
Taking into consideration that the necessity and the possibility measures have a sense of
the lower and the upper probabilities [10,11] we draw the conclusion that the function u(x)
determines a family 2 = { P} of probability measures P, such that
NESS(A) < P(4) < POSS(4) forany A e . (1)

pos
"(; "

In connection with this conclusion we introduce the possibilistic inclusion of a

statistical class F; into statistical class F: F, € F if the condition (1) holds.
The condition (1) is not convenient for practical application. The following theorem

enables us to express this condition by m.e. { 4(p)}, 4(p) ={x e X |1- p(x) < rt.

Theorem_5. The inclusion F, € F is valid if and only if for any p €[0,1] the
inequality P,] A(p)]z p holds.

Corollary 1. The relation of the set-theoretic inclusion "< " implicates the relation of
possibilistic inclusion "C ", i.e. F EF Jollows F, c F, but the contrary statement is false

=4

in general. In other words the inclusion "C" is stronger than

Corollary 2. The relations "C" and "€ " are equivalent if m.e. of statistical classes
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F=(X M P)and F, =(X,%,P) coincide, ie. Fc F < F, €F,ifo=0,

Corollary 2 enables us to project an approach to constructing the possibilistic inclusion

measure Y(F, € F). Let the fundamental sets of m.e. of statistical classes F, and F coincide.

Then on account of corollary 2 it is naturally to require the meanings of set-theoretic and

possibilistic measures to be equal, ie. w(F, & F)= w(F,c F). As the following lemma
shows in this case we can get a simpler expression for y(F,c F).

Lemma_8. Let the fundamental sets @, ={4 (p)} and (I>={A(p)} of me. of
statistical classes F, and F coincide, i.e. for any p €[0,1] there is such a p, €[0,1] that
A(p)=A4,(p,)- Then |

w(F, ¢ F)=2]min[p,P,[ A(p)]}dp- @)

The lemma having been proved enables us to define a measure of possibilistic inclusion
on the whole set of statistical classes. Consider the statistical class F, fixed by the membership
function u(x), and the class F, = {X,%,P}, fixed by a probability measure P,. One can
construct the fundamental set of me. &= {A(p)}, Ap)={xeX|1-u(x)< p}, of the
statistical class /' by the function u(x).

We choose conditionally the set of m.e. @, for the statistical class F; in such a way that
®=®,. In this case to define the inclusion measure y(F,c F) we could use the

representation (2). We will consider that this formula is also valid for possibilistic inclusion
measure (even if the sets of m.e. of statistical classes ' and F, are not coincide), i.e.

W(F, & F) =2 min[p, B[ 4(p)]}db.

Theorem 6. y(F, € F)=1ifandonlyif F,CF.
The upper and lower membership functions of the statistical class F; are found from the

following expressions
E(x)=1-R{yeX|p(»)>px}
#(x)=1-P{y e X |p(y) 2 u(x)}.

8. Conclusion

The set-theoretic representation of probability distributions with the purpose of
classifying them, proposed in the article, is the idea that has some merits. It enables us to
establish in a natural way the relation of a partial order on the set of probability distributions
and to define algebraic operations that can be interpreted as finding the least upper (the
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greatest lower) bounds in a partially ordered set. With this it should be mentioned that the
method of probability distributions classification essentially differs from the analogous methods
in the statistical theory of pattern Arecognition. The main restriction of these methods is that, as
a rule, a rigorous classification is considered. That is observations of a certain random process
or emergence are required to be strictly associated with one of some classes. Such an approach
does not take into account really existing "intersection" of the classes that could considerably
distort the picture of being observed emergency. In this sense the idea of statistical classes
gives us a possibility to avoid the obstacles mentioned above.

In contrast to the classical Bayesian methods the classes in the proposed classification
scheme might have fuzzy boundaries, the requirement of their disjointness and completeness
does not appear to be obligatory. It must be especially emphasized that similar mathematical
constructions are come out from Quite another consideration in [5] when approximating the
probability distribution by the possibility one. The analysis executed in the present paper
showed that it could be found the formal ground of applying the theory of fuzzy sets and
possibility theory for classification and identification of statistical data.
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