The λ-additive Fuzzy Measure and Fubini Theorem

Cao Wen-min

Nanjing work's University, Nanjing 210005 JiangSu, P. R. China

Abstract: In this paper, we will discuss the integrals of λ -additive fuzzy measure on product space X×Y, and the Fubini theorem is proved.

Keywords: λ-additive fuzzy measure, fuzzy integral, Fubini theorem.

1. Introduction

In 1974, Sugeno [1] first introduced the notions of fuzzy measures and fuzzy integral. Afterwards, Sugeno [2] added a further axiom to fuzzy measure, i. e. λ -additivity. More details concerning these special fuzzy measure can be found in the papers by Kruse [2,3], Banon[5], Hua[7]. In1982, Kruse [3] proved that there exists a relationship between probability measure and λ -additive fuzzy measure. This relationship is used to definite a so called "fuzzy integral" of a fuzzy event with respect to a λ -additive fuzzy measure[4], which is a proper tool to express fuzzy expectations.

Some properties of λ -additive fuzzy measure have been investigated in [6.7.8,], in the present paper, continuing Sugeno's work on λ -additive fuzzy measures and Kruse's work on fuzzy integrals, in section 3, we first give a λ -additive fuzzy measure on product space, further, the Fubini theorem is proved.

2. Preliminaries

Let (X, \mathcal{A}) be a measurable space, a λ -additive fuzzy measure on (X, \mathcal{A}) in Sugeno's sense [2] is a set function

$$g_{\lambda}: \mathscr{A} \rightarrow [0,1]$$

which is continuous with respect to monotone sequences of sets and satisfying

(1)
$$g_{\lambda}(\emptyset) = 0$$
 $g_{\lambda}(X) = 1$

(2)
$$A,B \in \mathcal{A}, A \cap B = \emptyset, \Rightarrow g_{\lambda}(A \cup B) = g_{\lambda}(A) + g_{\lambda}(B) + \lambda \cdot g_{\lambda}(A) \cdot g_{\lambda}(B)$$

where $\lambda \in (-1, \infty)$. If $\lambda \neq 0$, by using the transformation

$$H(x) = \log_{1+\lambda}(1+\lambda x) \tag{2.1}$$

then

$$g^* = H(g_{\lambda}) \tag{2.2}$$

is a probability measure on (X, \mathcal{A}) , and a fuzzy integral is defined like

$$\int_{A} f \, dg_{\lambda} = H^{-1} \left[\int_{A} H(f) dg^{*} \right]$$
 (2.3)

where $f: X \rightarrow [0,1]$ be a \mathscr{A} -measurable function and $A \in \mathscr{A}$. Properties of fuzzy integral can be found in [4,7].

3. g_{λ} -integral and Fubini theorem on product space

Let X, Y be two arbitrary nonempty sets, and $X \times Y$ be their Cartesian product.

Definition 3.1 Let $A \subset X \times Y$, for any $x \in X$, we will call the set $A_x = \{y : (x,y) \in A\}$ a X-section determined by x. The concept of a

Y-section determined by $y \in Y$ is defined similarly by $A_v = \{x: (x,y) \in A \}.$

Lemma 3. 1[9]: If $A \subset X \times Y$, $B \subset X \times Y$, $A^{(n)} \subset X \times Y$, n=1, 2,...,then

$$A \cap B = \varnothing \Rightarrow A_x \cap B_x = \varnothing, \ A_y \cap B_y = \varnothing$$
 (3.1)

$$A \supset B \Rightarrow A_x \supset B_x, A_y \supset B_y \tag{3.2}$$

$$A = \bigcup_{n} A^{(n)} \Rightarrow A_{x} = \bigcup_{n} A_{x}^{(n)}, A_{y} = \bigcup_{n} A_{y}^{(n)}$$
(3.3)

$$A = \bigcap A^{(n)} \Rightarrow A_x = \bigcap A_x^{(n)}, A_y = \bigcap A_y^{(n)}$$
(3.4)

Lemma 3. 2[9]: Let (X, \mathscr{A}_1) and (Y, \mathscr{A}_2) are measurable spaces, if $A \in \mathscr{A}_1 \times \mathscr{A}_2$, then for any $x \in X$, $A_x \in \mathscr{A}_2$, and for any $y \in Y$, $A_y \in \mathscr{A}_1$.

Definition 3.2: Let f(x,y) is a function on $X \times Y$, for any $x \in X$, we will call the function f_x , defined by

$$f_{x}(y) = f(x,y) \qquad y \in Y \qquad (3.5)$$

an X-section of f determined by x. The concept of a Y-section of f determined by $y \in Y$ is defined similarly by

$$f_{y}(\mathbf{x}) = f(\mathbf{x}, \mathbf{y}) \qquad \mathbf{x} \in \mathbf{X} \tag{3.6}$$

Lemma 3. 3[9]: If f(x,y) is a measurable function on $(X \times Y, \mathscr{A}_1 \times \mathscr{A}_2)$, then for any $x \in X$, $f_x(y)$ is a measurable function on (Y, \mathscr{A}_2) . For any $y \in Y$, $f_y(x)$ is a measurable function on (X, \mathscr{A}_1) .

Lemma 3. 4[9]: Let f(x,y) is a nonnegative measurable function on $(X \times Y, \mathscr{A}_1 \times \mathscr{A}_2)$, μ_1 and μ_2 are σ -finite measures on (X, \mathscr{A}_1) and (Y, \mathscr{A}_2) respectively, then

$$\int_{X} f(x,y) d \mu_{1}(x) \qquad \left[\int_{Y} f(x,y) d \mu_{2}(y) \right]$$
 (3.7)

is a measurable function on (Y, \mathscr{A}_2) $((X, \mathscr{A}_1))$. Specially, for every $A \in \mathscr{A}_1 \times \mathscr{A}_2$, $\mu_1(A_y)$ $(\mu_2(A_x))$ is a measurable function on

$$(Y, \mathcal{A}_2)$$
 $((X, \mathcal{A}_1)).$

Lemma 3. 5[9]: Suppose $(X, \mathcal{A}_1, \mu_1, \mu_1, \mu_1)$ and $(Y, \mathcal{A}_2, \mu_2)$ are two σ -finite measure spaces, and let

$$\mu(A) \triangleq \int_{\mathbf{X}} \mu_2(A_{\mathbf{x}}) d\mu_1(\mathbf{x}) \qquad A \in \mathcal{A}_1 \times \mathcal{A}_2$$
 (3.8)

or

$$\mu(A) \underline{\triangle} \int_{\mathbf{Y}} \mu_1(A_{\mathbf{y}}) d\mu_2(\mathbf{y}) \qquad A \in \mathcal{A}_1 \times \mathcal{A}_2$$
 (3.9)

Then, $\mu(\cdot)$ is an unique σ -finite measure on $(X \times Y, \mathscr{A}_1 \times \mathscr{A}_2)$, such that

$$\mu(A_1 \times A_2) = \mu_1(A_1) \cdot \mu_2(A_2)$$
 $A_i \in \mathcal{A}_i \ (i=1,2)$

Theorem3. 1: Let (X, \mathscr{A}_1) and (Y, \mathscr{A}_2) are two measurable spaces, $f(x,y): X \times Y \rightarrow [0,1]$ is a $\mathscr{A}_1 \times \mathscr{A}_2$ -measurable function, g_1 and g_2 are λ -additive fuzzy measure on (X, \mathscr{A}_1) and (Y, \mathscr{A}_2) respectively. Then

$$\int_{X} f(x,y) dg_{1}(x) \qquad (\int_{Y} f(x,y) dg_{2}(y)) \qquad (3.10)$$

is a measurable function on (Y, \mathscr{A}_2) , $((X, \mathscr{A}_1))$. Specially, for any $E \in \mathscr{A}_1 \times \mathscr{A}_2$, $g_1(E_y)$ $(g_2(E_x))$ is a measurable function on (Y, \mathscr{A}_2) $((X, \mathscr{A}_1))$.

Proof: From 1emma3. 3, for any $y \in Y$, $f_y(x) = f(x,y)$ is a \mathscr{A}_1 -measurable function, and $0 \leqslant f_y(x) \leqslant 1$. Thus

$$\int_{X} f(x,y) dg_{1} = \int_{X} f_{y}(x) dg_{1} = H^{-1} \left[\int_{X} H(f_{y}(x) dg_{1}^{*}) dg_{1}^{*} \right]$$

Since H(x) is a continous function, from lemma 3.4, $\int_X f(x,y)dg_1$ is a \mathcal{L}_2 -measurable function.

Specially, for any $E \in \mathscr{A}_1 \times \mathscr{A}_2$, if we make $f(x,y) = X_E(x,y)$, where $X_E(x,y)$ is a characteristic function of E, then

$$\int_{X} f(x,y)dg_1 = \int_{X} X_{E}(x,y)dg_1 = \int_{X} X_{Ey}(x)dg_1$$

$$=H^{-1}\left[\int_{X} H(X_{Ey}(x))dg_{1}^{*}\right]$$

$$=H^{-1}\left[g_{1}^{*}(E_{y})\right]=g_{1}(E_{y})$$

is 42-measurable function.

Theorem 3. 2: Suppose (X, \mathcal{A}_1, g_1) and (Y, \mathcal{A}_2, g_2) are two λ -additive fuzzy measure spaces, for any $E \in \mathcal{A}_1 \times \mathcal{A}_2$, let

$$g(E) \underline{\triangle} \int_{\mathbf{x}} g_2(E_{\mathbf{X}}) dg_1(\mathbf{x})$$
 (3.11)

or

$$g(E) \underline{\triangle} \int_{\mathbf{y}} g_1(E_{\mathbf{y}}) dg_2(\mathbf{y})$$
 (3.12)

then $g(\cdot)$ is a λ -additive fuzzy measure on $(X \times Y, \mathscr{A}_1 \times \mathscr{A}_2)$. Proof: For any $E \in \mathscr{A}_1 \times \mathscr{A}_2$, first, we have

$$\begin{split} g(E) = & \int_{X} g_{2}(E_{x}) dg_{1}(x) = H^{-1} \Big[\int_{X} \! H \big[g_{2}(E_{x}) \big] dg_{1}^{*} \Big] \\ = & H^{-1} \Big[\int_{X} \! g_{2}^{*} (E_{x}) dg_{1}^{*} \Big] = H^{-1} \Big[\int_{Y} g_{1}^{*} (E_{y}) dg_{2}^{*} \Big] = \int_{Y} \! g_{1}(E_{y}) dg_{2}(y) \end{split}$$

It is easy to see, $\int_X g_2^* (E_x) dg_1^*$ is a probability measure, therefore, from (2.2), $H^{-1} \Big[\int_Y g_2^* (E_x) dg_1^* \Big]$ is a λ -additive fuzzy measure.

Corollary: Suppose $g(\cdot)$ is a λ -additive fuzzy measure on $(X \times Y, \mathscr{A}_1 \times \mathscr{A}_2)$. Then for any $E_1 \in \mathscr{A}_1$, $E_2 \in \mathscr{A}_2$

$$H[g(E_1 \times E_2)] = H[g_1(E_1)] \cdot H[g_2(E_2)]$$
 (3.15)

Proof: From theorem 3.2, we have

$$\begin{split} H[g(E_{1} \times E_{2})] &= g^{*}(E_{1} \times E_{2}) = \int_{X} g_{2}^{*}(E_{1} \times E_{2})_{x} dg_{1}^{*} \\ &= \int_{X} g_{2}^{*}(E_{2}) \cdot X_{E_{1}}(x) dg_{1}^{*} = g_{1}^{*}(E_{1}) \cdot g_{2}^{*}(E_{2}) \\ &= H[g_{1}(E_{1})] \cdot H[g_{2}(E_{2})] \end{split}$$

Theorem3. 3 (Fubini): Let $(X, \mathcal{A}_1, g_1), (Y, \mathcal{A}_2, g_2)$ and $(X \times Y, \mathcal{A}_1 \times \mathcal{A}_2, g)$ are λ -additive fuzzy measure spaces, $f(x,y): X \times Y \rightarrow [0,1]$ is $\mathcal{A}_1 \times \mathcal{A}_2$ -measurable function, then

$$\int_{X \times Y} f(x,y) dg = \int_{X} \left[\int_{Y} f(x,y) dg_{2} \right] dg_{1} = \int_{Y} \left[\int_{X} f(x,y) dg_{1} \right] dg_{2}$$

Proof: By lemma3. 3, lemma3. 4, theorem3. 1 and the Fubini theorem with respect to probability measure, we have

$$\begin{split} \int_{X} & (\int_{Y} f(x,y) dg_{2}) dg_{1} = \int_{X} H^{-1} \Big[\int_{Y} H(f) dg_{2}^{*} \Big] dg_{1} \\ & = H^{-1} \Big[\int_{X} H \Big[H^{-1} \Big[\int_{Y} H(f) dg_{2}^{*} \Big] \Big] dg_{1}^{*} \Big] \\ & = H^{-1} \Big[\int_{X} \Big[\int_{Y} H(f) dg_{2}^{*} \Big] dg_{1}^{*} \Big] \\ & = H^{-1} \Big[\int_{Y} \Big[\int_{X} H(f) dg_{1}^{*} \Big] dg_{2}^{*} \Big] \\ & = \int_{Y} \Big[\int_{X} f dg_{1} \Big] dg_{2}. \end{split}$$

References

- [1] M. Sugeno, Theory of fuzzy integrals and its applications. Thesis, Tokyo Institute of Technology (1974).
- [2] M. Sugeno and Terano. A model of learning based on fuzzy information, Kybernetes 6(1977), 157—166.
- [3] R. Kruse, A note on λ-additive fuzzy measures, Fuzzy Sets and Systems, 8(1982), 219-222.
- [4] R. Kruse, Fuzzy integrals and conditional fuzzy measures, Fuzzy Sets and Systems, 10(1983), 309—313.
- [5] G. Banon, Distinctions between several subsets of fuzzy measures, Fuzzy Sets and Systems, 5(1981),291-305.
- [6] Hua Wenxiu, Some properties of g_λ-measures, BUSEFAL, 26 (1986), 47-56.
- [7] Hua Wenxiu, The properties of some non-additive measures, Fuzzy Sets and Systems, 27(1988), 373-377.
- [8] Hua Wenxiu, Li Lushu, The g_λ—measures and conditional gλ-measures on measurable spaces, Fuzzy Sets and Systems, 46 (1992), 211–219.
- [9] Yan Shijian, Foundations of probability theory (Science press, Beijing 1982), (in Chinese).
- [10] Zhang Wenxiu, Foundations of fuzzy mathematics, Xian Jiaotong University Press (1984), (in Chinese).