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The A-additive Fuzzy Measure and Fubini Theorem
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Abstract: In this paper, we will discuss the integrals of A-additive fuzzy measure on

product space X XY, and the Fubini theorem is proved.
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1. Introduction

In 1974, Sugeno [ 1] first introduced the notions of fuzzy measures
and fuzzy integral. Afterwards, Sugeno [2] added a further axiom to
fuzzy measure, i.e. A-additivity. More details concerning these special
fuzzy measure can be found in the papers by Kruse [2,3], Banon[5],
Hua[7]. In1982, Kruse [ 3] proved that there exists a relationship be-
tween probability measure and A-additive fuzzy measure. This relation-
ship is used to definite a so called “fuzzy integral” of a fuzzy event with
respect to a A-additive fuzzy measure[ 4 ], which is a proper tool to ex-
press fuzzy expectations.

Some properties of A-additive fuzzy measure have been investigated
in [6.7,8,], in the present paper, continuing Sugeno’s work on A-ad-
ditive fuzzy measures and Kruse's work on fuzzy integrals. in section 3,
we first give a A-additive fuzzy measure on product space. further, the

Fubini theorem is proved.
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2. Preliminaries

Let (X,.# )be a measurable space, a A-additive fuzzy measure on
(X,-#)in Sugeno’s sense [ 2] is a set function

g: @ —>[0,1]
which is continuous with respect to monotone sequences of sets and sat-
isfying

(D ga(@=0 aX)=1

(2) A,Be &, ANB=J,=>a(AUB) =g (A)+a(B)+A + a
(A) » g¢(B)
- where A& (—1,00).If A7%0, by using the transformation

H(x) =log; 2+ (1+Ax) - @D
then |

g'=H@) | (2.2)
is a probability measure on (X,-%),and a tuzzy integral 1s detined like

[ 1 dg;\:H‘l[JA H(Pdg" ] (2.3)

where f: X—[0,1] be a <@ -measurable function and A€ «. Proper-

ties of fuzzy integral can be found in [4,7].
3. gxr-integral and Fubini theorem on product space

Let X,Y be two arbitrary nonempty sets, and X X Y be their
Cartesian product.

Definition 3.1 Let ACX XY, for any x& X, we will call the set
A,={y: (x.v)E€ A} a X-section determined by x. The concept of a
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Y-section determined by yE& Y is defined similarly by
Ac={x: x,yD€ A }.
Lemma 3.1[9]:.If AC XXY, BCXXY, AC XXY, n=1,

2.+ .then

ANB=g=ANB.=J, A,\\B=J (3.1
ADB=>A,DB,,A, DB, (3.2)
A=U,AV=>A,=U. A", Ay=U, A (3.3
A=NAY=A=NA" Ayj=NAP (3. 4)

Lemma 3. 2[9]: Let (X, .%”,) and (Y,véfz) are measurable
spaces, if A € & X %7,,then for any xEX, A& «;,, and for any
yeY, A€ .

Definition 3. 2: Let f(x,y) isa function on XXY, for any x&€X,
we will call the function {,, defined by |

f«(y)=1(x,y) yeY (3.5)
an X-section of f determined by x. The concept of a Y-section of f de-
termined by y €Y is defined similarly by

f.(x)=1(x,y) x€X (3.6)

Lemma 3. 3[9] If f(x,y) is a measurable function on (X XY,
71 X&), then for any xE€X, f.(y) is a measurable function on
(Y..7,). For any yEY, £,(x) is a measurable function on (X ..o,).

Lemma 3. 4[9]: Let f(x,y) is a nonnegative measurable function
on (XXY, & X&),y and p, are o-finite measures on (X, %)
and (Y,.#,) respectively, then ‘

L_f(x,y)d oy () [ L{f(x,y)d 1, () 3.7

1 a measurable function on (Y,.%,) ( (X, ) ). Specially, for ev-
erv A€ .7 X,y (Ay) (i (Ay) ) 1s a measurable function on
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(Y., ((X,&) ).
LLemma3. 5[ 9]: Suppose (X, },,) and (Y,%7,, ;) are two

o-finite measure spaces, and let
n(AL . 2 (A ) dpy (%) Ac & X, (3.8)

or

pAL] A A€ X, (3.9
Then, p( ¢ ) is an unique o-finite measure on (X XY, o 1 X ),
such that

(A XA =p(Ay) * 12(Az) Aie &  (1=1,2)

Theorem3. 1: Let (X, ;) and (Y, %7,) are two measurable
spaces, f(x,y) :XXY-[0,1] is a -, X & ;-measurable function, g,
and g, are A-additive fuzzy measure.on (X,%;) and (Y,.%;) respec-
tively. Then

jxf<x,y>dgl<x> <Lf<x,y>dgz<y) ) O (3.10)

1s a measurable function on (Y,2;), ( (X,.&) ). Specially, for any
Ec o Xy, gi(Ey) (g (Ex) )is a measurable function on (Y,
) ((X,&)) ).

Proof: From lemma3. 3, foranyy € Y, {,(x)={(x,y) isa .« -
measurable function, and O<C {,(x) << 1. Thus

[ txoyrdg=] .60 dg=H[[ H, 00 dgr ]

Since H(x) is a continous function, from lemma3. 4, JX f(x,y)dg; 1s a

.7 »-measurable function. _
Specially, for any E € &) X 7, if we make f(x,y)= Xg(x,y),

where Xg(x,y) is a characteristic function of E, then

[ fxyrde, =JXXE(x,y)dg1=JX Xe, (x)dgy
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=H71[ | H(Xe, G0)dgi |
=H"[g; (E,)]=g,(E,)
is «& ,-measurable function.
Theorem3. 2. Suppose (X,-e,g,) and (Y,-%7,,g,) are two A-
additive fuzzy measure spaces, for any EE€ | X &, let

g(E) 4 g(Ex)dg (0 (3.11)

or

g(E)a Ygl(E_v)dgz(y) | (3.12)
then g( + ) is a \-additive fuzzy measure on (X XY, <) X &,). |
Proof . For any E€ &) X &, first, we have

g(E) :Jx g2(E)dg (x)=H™" UXH[gz (Eo) Jdgr -l
—H1[| g Bodgr |=H[ [, & Edes |=[ g1 (Edg )

It is easy to see, Jx g; (Ex)dgy is a probability measure, therefore,

from(2. 2) ,H“‘UX g (Ex)dgl*:] is a A-additive fuzzy measure.
Cdrollary : Suppose g( * ) is a A-additive fuzzy measure on (XX

Y, X,). Then for any E, € <« ,, E,€.«,
H[g(E, XE;) ]J=H[g,(E))] « H{g,(E;)] (3.15)

Proof ; From theorem 3. 2, we have

H[g(Ey XE;) J=g" (Ey XEy) -—-jx gt (EyXEp), dgi'

=ngz* (E2) « Xg, (x)dgy =gy (E)) « g5 (E,)
=H[g;(E)) ] » H[ g, (E;)]
Theorem3. 3 (Fubini) : Let (X,.@,g,),(Y,.%,,g;) and (XX
Y. 7 X Z,.g) are A-additive fuzzy measure spaces, {(x,y) : X XY—

[0,1] is .| X o ,-measurable function. then
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JXXY fGoy) ngJX[JY fx ’y)dgz]dgl =JYUX f(x,y)dg, ]dg?

Proof : By lemma3. 3, lemma3. 4, theorem3. 1 and the Fubini

theorem with respect to probability measure, we have
[ (. texyrdgndg =[ B[] HcHdgs Jag,
=H-(| H[H[| Hdgs ] Jder |
=n([ [ 1D dgs Jdg |
=11[[ [ HDdgr Jdgr ]

=| [ fde Jag..
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