On the exhaustivity and property (p.g.p) of non-additive set functions

Qingshan Jiang

Department of Mathematics, Chiba Institute of Technology
Shibazono, Narashino, Chiba 275, Japan

Abstract: In this paer, a further research on structural characteristics of non-additive set functions is made. Several sufficient and necessary conditions for the exhaustivity and property (p.g.p) of fuzzy measures are given.

Keywords: Set functions, exhaustivity, property (p.g.p), null-additivity.

1 Introduction

The structural characteristics of non-additive set functions are introduced by Dobrakove [1, 2] and Wang [8]. These concepts play very important roles in fuzzy measure theory [3 \sim 9]. In this paper, we further investigate connections between them, and give several sufficient and necessary conditions for the exhaustivity and property (p.g.p) of set functions.

2 Notations and preliminaries

Let X be a non-empty set, \mathcal{A} a σ -ring of subsets of X, and let $\mu: \mathcal{A} \to \overline{R_+} = [0, +\infty]$. Unless stated otherwise, all subsets are supposed to belong to \mathcal{A} and all set functions are assumed to be monotone and equal to zero on the emptyset.

Definition 1 μ is said to be null-additive if $\mu(F) = 0$ implies $\mu(E \cup F) = \mu(E)$; autocontinuous from above if $\lim_n \mu(F_n) = 0$ implies $\lim_n \mu(E \cup F_n) = \mu(E)$.

Definition 2 μ is said to be continuous from above at \emptyset (or order continuous) if $E_n \setminus \emptyset$ implies $\lim_n \mu(E_n) = 0$; and exhaustive if $\mu(E_n) \to 0$ for any infinite disjoint sequence $\{E_n\}_n$.

Definition 3 μ is called a LSC-fuzzy measure if it is continuous from below, i.e., $\lim_n \mu(E_n) = \mu(E)$ for any $E_n \nearrow E$.

3 Exhaustivity

In this section, we give three sufficient and necessary conditions for the exhaustivity of non-additive set functions.

Theorem 1 μ is exhaustive if and only if any monotone sequence $\{E_n\}_n$ is μ -cauchy, i.e.,

$$\mu(E_n \triangle E_m) \to 0 \text{ as } n \wedge m \to +\infty.$$

Proof. Let μ be exhaustive and $\{E_n\}_n$ be a increasing sequence. If $\{E_n\}_n$ is not μ -cauchy, then there exist $\epsilon > 0$ and a subsequence $\{E_{n_k}\}_k$ of $\{E_n\}_n$ such that

$$\mu(E_{n_{k+1}} - E_{n_k}) = \mu(E_{n_{k+1}} \triangle E_{n_k}) \ge \epsilon, \ (\forall k \ge 1).$$

Put $F_k = E_{n_{k+1}} - E_{n_k}$, $k \ge 1$. Then, F_k are pairwise disjoint and $\lim_k \mu(F_k) \ge \epsilon$. This is in contradiction with the exhaustivity of μ . The 'only if' part is true.

Now, we prove the 'if' part. Let $\{E_n\}_n$ be a sequence of pairwise disjoint subsets. Then, $F_n = \bigcup_{k=n}^{+\infty} E_k \setminus \emptyset$ as $n \nearrow +\infty$ and, hence, $\{F_n\}_n$ is μ -cauchy. Therefore, we

can get

$$\lim_{n}\mu(E_n)=\lim_{n}\mu(F_n-F_{n+1})=\lim_{n}\mu(F_n\bigtriangleup F_{n+1})=0.$$

The theorem is now proved.

Similarly, we can prove the following theorem.

Theorem 2 μ is exhaustive if and only if, for any $\epsilon > 0$ and $\{E_n\}_n$, there exists n_0 such that

$$\mu\left(E_n-\bigcup_{k=1}^{n_0}E_k\right)<\epsilon,\quad (\forall n\geq n_0).$$

Theorem 3 Let μ be a LSC-fuzzy measure. Then, μ is exhaustive if and only if it is continuous from above at \emptyset .

Proof. The 'if' part is trivial by theorem 2.

Let μ be exhaustive and $\{E_n\}_n$ a decreasing sequence with an empty intersection. Then, it is μ -cauchy and, hence, for any $\epsilon > 0$, there exists n_0 such that

$$\mu(E_n \triangle E_m) < \epsilon \quad (\forall n \land m \ge n_0).$$

Thus, we have

$$\mu(E_n) \leq \epsilon, \quad (\forall n \geq n_0).$$

i.e., the 'only if' part is true. \Box

4 Property (p.g.p)

In this section, we further suppose that μ is a LSC-fuzzy measure on (X, A).

Definition 4 μ is said to have the property (p.g.p) if, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\mu(A) \vee \mu(B) \le \delta \Rightarrow \mu(A \cup B) \le \epsilon$$
 [2].

Theorem 4 μ has the property (p.g.p) if and only if, for any $\{E_n\}_n$ and $\{F_n\}_n$ and $\lim_n \mu(E_n) \vee \mu(F_n) = 0$, there exist subsequencs $\{E_{n(k)}\}_k$ and $\{F_{n(k)}\}_k$ such that $\lim_k \mu(E_{n(k)} \cup F_{n(k)}) = 0$.

Proof. It is obvious by Definition 4. \square

Corollary 1 If μ is autocontinuous from above, then it has the property (p.g.p).

Proof. It is trivial by Theorem 3 and the autocontinuity from above of μ . \square

Theorem 5 Let μ have the property (p.g.p.) and $\lim_n \mu(E_n) = 0$. Then, there exist a subsequence $\{E_{n(k)}\}_k$ of $\{E_n\}_n$ and $\delta_k \searrow 0$ such that

$$\mu\left(\bigcup_{i=k+1}^{+\infty} E_{n(i)}\right) \leq \delta_k, \quad (\forall k \geq 1).$$

Proof. Since μ has the property (p.g.p), there exists $\delta_1 > 0$ such that

$$\mu(E) \vee \mu(F) \leq \delta_1 \Rightarrow \mu(E \cup F) \leq \frac{1}{2}.$$

For above δ_1 , there exists $\delta_2 \in (0, \frac{1}{2^2} \wedge \delta_1)$ to satisfy that

$$\mu(E) \lor \mu(F) \le \delta_2 \Rightarrow \mu(E \cup F) \le \delta_1$$
,

and, similarly, there exists $\delta_3 \in (0, \frac{1}{2^3} \wedge \delta_2)$ to satisfy that

$$\mu(E) \vee \mu(F) \leq \delta_3 \Rightarrow \mu(E \cup F) \leq \delta_2.$$

Repeating this procedure, we can get a sequence $\{\delta_k\}_k$ such that

$$0<\delta_k<\frac{1}{2^k}\wedge\delta_{k-1}.$$

Since $\lim_n \mu(E_n) = 0$, there exists a subsequence $\{E_{n(k)}\}_k$ to satisfy that

$$\mu(E_{n(k)}) \leq \delta_k, \quad (\forall k \geq 1).$$

Therefore, we have

$$\mu\left(\bigcup_{i=k+1}^{r+1} E_{n(i)}\right) \leq \delta_r, \quad (\forall r, k \geq 2),$$

it follows that the subsequence $\{E_{n(i)}\}_i$ satisfies the requirement of the theorem.

Definition 5 μ is said to have the property (s) if $\lim_n \mu(E_n) = 0$ implies there exists a subsequence $\{E_{n(k)}\}_k$ such that $\overline{\lim}_k \mu(E_{n(k)}) = 0$.

As a direct result of Theorem 5, we have the following corollary.

Corollary 2 If μ has the property (p.g.p.), then it has the property (s).

Theorem 6 Let μ be exhaustive and null-additive. If μ has the property (s), then it has the property (p.g.p).

Proof. Suppose that μ has not the property (p.g.p.). Then, there exist $\epsilon_0 > 0$ and sequences $\{E_n\}_n$ and $\{F_n\}_n$ such that

$$\mu(E_n) \vee \mu(F_n) \to 0$$
 while $\mu(E_n \cup F_n) \ge \epsilon_0$, $(\forall n \ge 1)$.

By using the property (s) of μ , there exist subsequences $\{E_{n(k)}\}_k$ and $\{F_{n(k)}\}_k$ such that $\mu(\overline{\lim}_k E_{n(k)}) = 0$ and $\mu(\overline{\lim}_k F_{n(i)}) = 0$. Thus, we have $\mu(\overline{\lim}_k (E_{n(k)} \cup F_{n(k)})) = 0$ and

$$\overline{\lim}_{k}\mu(E_{n(k)}\cup F_{n(k)})\leq \lim_{k}\mu\left(\bigcup_{i=k}^{+\infty}(E_{n(i)}\cup F_{n(i)})\right)=0$$

by exhaustivity and null-additivity of μ . This is in contradiction with the fact that

$$\mu(A_{n(k)} \cup B_{n(k)}) \ge \epsilon_0, \quad (\forall k \ge 1).$$

The theorem is now proved. \Box

References

- [1] I. Dobrakov, "On Submeasures I." Dissertat. Math. 112 (1974) 5-35.
- [2] I. Dobrakov and J. Farkova, "On Submeasures II.", Math. Slovoca. 30 (1980) 65-81.
- [3] Q. Jiang and H. Suzuki, "Lebesgue and Saks decompositions of σ -finite fuzzy measures." to appear in Fuzzy Sets and Systems (1995).
- [4] Q. Jiang and H. Suzuki, "The rang of σ -finite fuzzy measures." The proceedings FUZZ-IEEE/IFES'95 (Yokohama, Jappan).
- [5] Q. Jiang, H. Suzuki, Z. Wang, G. J. Klir, J. Li, M. Yasuda. "The Property (p.g.p) of fuzzy measures and convergence in measure," submitted to *The Journal of Fuzzy Mathematics*.
- [6] Q. Jiang, H. Suzuki, Z. Wang, G. J. Klir. "Exhaustivity and absolute continuity of fuzzy measures," under preparation.
- [7] Q. Jiang, Z. Wang, G. J. Klir, H. Suzuki. "The Property (p.g.p) and autocontinuity of σ -finite fuzzy measure," under preparation.
- Z. Wang, "The autocontinuity of set function and the fuzzy integral,"
 J. Math. Anal. Appl. 99 (1984) 195-218.
- [9] Z. Wang and G. J. Klir, Fuzzy Measure Theory, Plenum, New York 1992.