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THE H-VALUED FUZZY ORTHOGONAL MEASURES
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Abstract: The concept of H—valued fuzzy orthogonal measure (abbr. HFOM)
on regular fuzzy measurable space is proposed. The representation theorem of
HFOM'’s is proved. The properties of the normal family of HFOM’s and the weak
convergence of HFOM!s are also investigated.
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1. Introduction |

Throughout this paper, let X be a non—empty crisp set and F(X) the class of all fuz-
'zy sets in X. The index function of the subset E of X is denoted by yz. Let X be a
non—empty sub—class of F(X) and ¢(Z) the o—algebra generated by the class of sets {4
-(B): BeB , AeX)}, where B, is the Borel algebra of [0, 1]. We will call ¢(Z) the o—al-

gebra induced from X. For fuzzy sets 4, BeF(X), the sum 4@ B, difference A© B and
product A®B are the fuzzy sets defined by, respectively

(AP B)(x) =min{1, A(x)+ B(x)}
(4© B)(x)=max{0, 4(x)— B(x)}
(A®B)(x) = A(x) * B(x)
Recall that a fuzzy measurable space (X, X) is said to be regular if ¥ satisfies the
condition:
M ael0,1], M Eea(Z) = > a- D>

Where X is the o—additive class of fuzzy sets 9.

More details about the the proerties of fuzzy measurable space and regular fuzzy
measurable space can be found in [1,2,4,5].

Decfinition 1.1 Let H be a Hilbert space on R. H is said to be ordered, if a partial or-
der < on H is defined with the following conditions: for V¥ a, b, ¢, deH
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(1) a<b,c<d => a+c<b+d
(2 MkeR',a<b => k-a<k-b
(3) MheH', —h<a<h => |a|<|b|
4 H' is complete.
Where H'={h€H: 0<h}, 0is the zero clement of H and |hll =N <h, A > .

In this paper, we will always suppose that H is an ordered Hilbert space, and for
distinction, we denote the limit operation in H by (H) lim.

2. Fuzzy Orthogonal Measures on Regular Fuzzy Measurable Space

Definition 2.1 Let (X, X) be a regular fuzzy measurable space and H an ordered Hilbert
space. A mapping u: T~ H" is called an H—valued fuzzy orthogonal measure (abbr.
HFOM) if the following conditions are satisfied:

(H1) w(0)=0 (O(x)=0, M xeX);
(H2) if A, BeZ and A\B=0 then <u(d), u(B)> =0;

(H3) if A eZ and izn(x)<l (MxeX) then W& 4d,)= iy(z,).

The conditions (H2) and (H3) are called the orthogonality and g—additivity of the
HFOM y, respectively.

Refer to [1, 2], it is easy to prove that an HFOM pu on the regular fuzzy measurable
space (X, X) has the following properties:

Propostion 2.1 Let 1 be an HFOM on regular fuzzy measurable space (X, ), then
(1) pis finitely additive, i.e.

if 4,eZ and Y 4 ,(x)<1 (M xeX) then e A)=Y u4)

i=1
(2) uis montone and subtractive, i.e.
if 4, BeZ and A< B then u(d)<u(B), wB)O 4)=u(B)+ (- uA))
where — y(/? ) is the negative element of u(}f) in H.

(3) uiscontinuous, i.e.

if 4 eZ and A 1A(resp. A |A) then (H) limu(4 )= u(A)

L]

Now we present the representation theorem of HFOM!s, which demonstrates the
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structural characteristics of HFOM’s:

Theorem 2.1 A mapping u: = H" is an HFOM on the regular fuzzy measurable

space (X, I) if and only if there exixts a classical finite measure m: a(Z)~ R*
such that

<wd), uB)> =J, (A@B)x)dm (VM 4, Bex)
where a(X) is is the o—algebra induced from X.

Proof (1) Sufficiency: Suppose the conditions of theorem 2.1 hold. To prove
that p is an fuzzy orthogonal measure, we only need to prove that the condition (H3)

holds. In fact, for 4 €% (n=1,2,3,.) and Y 4 (x)<1 (M xeX), wehave

@ 4,)- TuAN = <u@ )~ T ud,), e )~ Tucd,)>

= <u(EBA ), u(C-BA )> —22 <u(€BA ), WA )> + EZ <ud), u(A >

=1 fal jut

=I,[(21,(x)> —22(2A (x) - A(x))+ZZA (x) = 4 (x)] dm

i=] jul

= (X4, 2A ) dm=]_ [Z A, dm

f=nsl

Since 0< Y A,(x)<1 and lim ¥ 4 ,(x) =0, Fatou’s lemma ®! implies that

{=ntt R-e® {umntl

llmllu(GDA )—Zu(A W = tim| [Z 4,0 dm=0

L] N-s O (LY EX]

ie. u(GB A)=(H)lim Zu(A )= Zu(A )

(2) Necessity: Suppose u is a fuzzy orthogonal measure on (X, X). We define a
non—negative set function m: ¢(Z)—~R"* by

m(E)= <u(x,), s(x;)> (M Eeo(T))
Then we can prove that m is a classical finite measure on (X, a(Z)).
Since I is regular, from [5, theorem 2.5] we know that E=F(¢(X))={deF(X): A
is g(X)-measurable}. Hence, for any A , Be z, A and B are both o(X)—measurable.
From the properties of measurable functions P! it is known that we can choose k =k(n,
m) €N, «;, ;€ [0, 1] and disjoint sets E; € ¢(Z) (i=1,2,...k) such that
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k k
Auz@at'xa‘,' Bm=@ﬂi'xb‘,
i=1 (=]

with Z'TZ, EMTE and k=k(n, m)>co as n, m—co,

From the regularity of I and the continuity of u, we know 4 o B - €Z and

=l

wAd)=Yo, ~ulty) B )=X8,- (g )
Therefore |

<wd), mB)>=Y¥ahb, - <uxy) Mxg )>

=XeaB, v <ulxs) wg)> =Y, -mE)=[ (4,©F8,)x)dm

Hence

< u(A), u(By> = lim <4 ), w8, )>

LE Y

= lim | (4,®B Yx)dm =], (A®B)(x)dm.

"m0

This ends the proof of theorem 2.1.

3. The Normal Family and Weak Convergence of HFOM's

Definition 3.1 Let (X, X) be a regular fuzzy measurable space and ® a family of
HFOM’s on (X, X). @ is said to be normal, if for any y, v€ ® and any 4, BeX, we
have < u(4), v(B)> =0 whenever 4(\B =0.

Propostion 3.1 Suppose regular fuzzy measurable space ® is a family of HFOM/’s on the
regular fuzzy measurable space (X, ). Then ® is normal if and only if, for any u, v€
@, there exist s classical finite signed measure m on (X, ¢(X)) such that

<ud), vB)> =] (A@B)(x)dm (M4, Bex)

Definition 3.2 Let {u_ }:’_ be a sequence of HFOMs on the regular fuzzy measurable

1

space (X, ). If for any A€X, the sequence {u (4)}._, in H' is convergent to u(4),

1
then we call u: T—~H" the weak limit of { ”.}:)-1 , or we say that { un}:_l converges
weakly to u.

We can prove that the weak limit have the following properties:
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Proposition 3.2 Let { uu}:’_l be a sequence of HFOM’s on the regular. fuzzy
measurable space (X, X). If {l‘,.}::x converges weakly to u, then u is also an
HFOM on (X, X).

Proposition 3.3 Suppose @ is a normal family of HFOM’s on the regular fuzzy
measurable space (X, X). Then
@ ={u: there exist { ".}:0-1 in ® such that { uu}:", converges weakly to u}

is also a normal family of FHOM's.

Theorem 3.1 Suppose @ is a normal family of HFOM'’s on the regular fuzzy measurable
space (X, I), and it forms a linear space. If @ is closed under weak convergence, then the
function <+, * >4 ®xO—R defined by

<p, v> o= <p(xy), v(x,)>
is an inner product in @, and @ is a Hilbert space. Moreover, { l‘..}:o_x converges strong-

ly in @ if and only if it converges weakly in ®.

Proof It is easy to verify that < =, * >4 is an inner product in ®. To prove that
@ is a Hilbert space, we introduce anorm || « |l o by ll ull o= <t B>, .
Suppose { un}:’_] is a Cauchy sequence in ®@, i.e. || p—py Il o~ 0 as n, k—oo.
From Proposition 3.1 we know that, for ¥ AeX, |
~ ~ 2 ~ ~ ~2
I, (A)— (DI = <, — 1, )NA4), (1, —u NA4)> =Ix A" dm
<J xpdm= <, —p)) (1, = 1 )ty)>

2
=<, —py b, =M, > =, —ple—0 (n, k—o0)

This implies that, for ¥ A€ X, {u_}._, is a Cauchy sequence in H*. Therefore,
from the completeness of H', there exists u(4)€ H' such that (H) lim u (d)= u(A)

LI X

(M A€Y), ie p,=> p. Since Dis closed under weak convergence, we have u€d. So
@ is complete, and consequently, ® is a Hilbert space.

Further, suppose { uu}f_l converges to u strongly in @, then for V AeX, we have
~ ~ 2 ~ ~ ~2
b, (A) — p(DI* = <@, — A, (w, =)D > =], 4" dm
<J g dm= <, —m)xy), (, —Wty)>

2
= <p —p p,—p>=\|p, —uly—-0 (n,— o0)
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Thatis, { u'}:’_l converges to u weakly in @.
On the other hand, if {u_}_, converges to u weakly in @, ie. (H) lim u ()

N -» 00

= u(A) holds for M 4 eX. Taking A= X, » We get

W, — ulli =<p, —p p,—p>= <@, —mg) i, —mty)>
=, () — BN =0 (n—c0).

This means that { u_}:l’_‘ converges to u strongly in ®. Hence the stronge
convergence and weak convergence are equivalent in ®.
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