Theory of Convergence of L-nets in Topological Molecular Lattices

Cheng Ji-Shu

Department of Mathematics, Qinghai Junior Teachers' College, Xining Qinghai, 810007, P. R. China

Abstract: In this paper, we introduce the concepts of L-nets and its convergence in topological molecular lattices^[4], which is a generalization of the papers^[1,4,5], and systematically discuss their properties and the characterizations of continuous generalized order-homomorphism by means of convergence the theory of L-net.

Keywords: L-net; limit point; cluster point; continuous order-homomorphism

1. Preliminaries

Throughout this paper, L and L₁ will denote completely distributive lattices, M and M₁ will denote the set of all moleculae in L and L₁ respectively, while $(L(M), \eta)$ and $(L_1(M_1), \eta_1)$ denote topological molecular lattices^[4], the elements of η or η_1 will be called closed elements. Since there is no 'pseudo—complement', open and closed element are not dual concepts. A—will denote the closure of $A \in L$, $\eta(e) = \{P \in \eta: e \not\equiv P\}$ and the elements in $\eta(e)$ are said to be R-neighborhood of $e \in M$.

2. Convergence of L-nets

In this section, we introduce the notions of limit points, cluster points and convergence of L-net, systematically discuss various properties of them, and so establish the convergence theory of L-nets.

Definition 2. 1. Let (D, \leq) be a directed set. Then the mapping $S:D \longrightarrow L$ is called Lnet in L. For each $n \in D$, put $S(n) = A_n$, then the net S will be denoted by $\{A_n: n \in D\}$.

Definition 2. 2. Let $\{A_n : n \in D\}$ be an L-net in $(L(M), \eta)$ and $e \in M$.

(1) e is called a limit point of $\{A_n : n \in D\}$ if for each $P \in \eta(e)$, there is an $m \in D$ such that $A_n \not\leq P$ for all $n \geq m$.

- (2) e is called a cluster point of $\{A_n : n \in D\}$ if for each $P \in \eta(e)$ and each $n \in D$, there is an $m \in D$ such that $m \ge n$ and $A_m \le P$.
 - (3) $\lim_{n \to \infty} A_n$ is the union of all limit points of $\{A_n : n \in D\}$.
 - (4) $\overline{\lim} A_n$ is the union of all cluster points of $\{A_n : n \in D\}$.
- (5) If $\underline{\lim} A_n = \overline{\lim} A_n = A$, then we say that A is the limit of $\{A_n : n \in D\}$ or say that $\{A_n : n \in D\}$ converges to A, in symbol $\lim A_n = A$.

From Definition 2.2 we have

Theorem 2. 1. Let $\{A_n : n \in D\}$ be an L-net in $(L(M), \eta)$, then

$$\lim A_{\bullet} \leqslant \overline{\lim} A_{\bullet}$$

Theorem 2. 2. Let $\{A_n : n \in D\}$ be an L-net in $(L(M), \eta)$, and $e \in M$.

- (1) $e \le \lim A_n \text{ iff } e \text{ is a limit point of } \{A_n : n \in D\}$
- (2) $e \leqslant \overline{\lim} A_n \text{ iff } e \text{ is a cluster point of } \{A_n : n \in D\}$

Proof. (1) In case $e \leq \underline{\lim} A_n$ and $P \in \eta(e)$. Since $e \not\equiv P$ implies $\underline{\lim} A_n \not\equiv P$, we have a limit point b of $\{An: n \in D\}$ with $b \not\equiv P$ i. e. $P \in \eta(b)$, therefore there exists an $m \in D$ such that $A_n \not\equiv P$ for all $n \geqslant m$. This shows that e is a limit point of $\{A_n: n \in D\}$. Conversely, if e is a limit point of $\{A_n: n \in D\}$, then $e \leq \lim A_n$ by Defintion 2. 2.

(2) The proof is similar to that of (1).

Corollary 2. 3. Let $\{A_n : n \in D\}$ be an L-net in $(L(M), \eta)$, then $\lim A_n = A$ iff the followings hold:

- (1) If $e \leq A$, then e is a limit point of $\{A_n : n \in D\}$;
- (2) If e is a cluster point of $\{A_n : n \in D\}$, then $e \leq A$.

Theorem 2. 4. Let $\{A_n : n \in D\}$ is an L-net in $(L(M), \eta)$, then $\overline{\lim} A_n = \bigwedge_{n \in D} (\bigvee_{m \geqslant n} A_m)^{-1}$

Proof. From Definition 2. 2 and Theorem 2. 2 we have $e \le \overline{\lim} A_n$ iff for each $P \in \eta(e)$ and each $n \in D$, there is an $m \in D$ such that $m \ge n$ and $A_m \ne P$ iff for each $P \in \eta(e)$ and each $n \in D$ there exists an $m \in D$ such that $\bigvee_{m \ge n} A_m \ne P$ iff for each $n \in D$, $e \in (\bigvee_{m \ge n} A_m)^-$ iff $e \in \bigwedge_{n \in D} (\bigvee_{m \ge n} A_m)^-$, where $e \in M$.

Theorem 2. 5. Let $\{A_n : n \in D\}$ be an L-net in $(L(M), \eta)$, put $\Omega = \{H : H \text{ is an arbitrary cofinal subset of } D\}$. Then

$$\underline{\lim} A_n = \bigwedge_{H \in \Omega} (\bigvee_{m \in H} A_m)^-$$

Proof. If $e \leq \underline{\lim} A_n$ and $P \in \eta(e)$, then we have $n_o \in D$ satisfying $A_n \not\leq P$ for all $n \geqslant n_0$. Arbitrarily choose a cofinal subset H of D, then there exists an $m \in H$ such that $m \geqslant n_0$ and $A_m \not\leq P$. This implies that $e \leq (\bigvee_{m \in H} A_m)^-$ and so $\underline{\lim} A_n \leqslant \bigwedge_{H \in \Omega} (\bigvee_{m \in H} A_m)^-$.

Conversely, now suppose e is not in $\underline{\lim}A_n$, i. e. $e\not\equiv\underline{\lim}A_n$. then there is a $P\in\eta(e)$ such that for all n in D we can choose $m(n)\geqslant n$ with $A_m(n)\leqslant P$. Let $H_p=\{m(n):n\in D\}$. It is clear that H_p is a cofinal subset of D for which $\bigvee_{m(n)\in H_p}A_{m(n)}\leqslant P$. Hence $e\not\equiv (\bigvee_{m(n)\in H_n}A_{m(n)})^-$ and hence $\bigwedge_{H\in\Omega}(\bigvee_{m\in H}A_m)^-\leqslant\underline{\lim}A_n$.

Corollary 2. 6. Let $\{A_n : n \in D\}$ is an L-net in $(L(M), \eta)$, then

- (1) $\underline{\lim} A_n$ and $\overline{\lim} A_n$ are closed elements in $(L(M), \eta)$.
- (2) $\underline{\lim} A_n = \underline{\lim} (A_n)^-$.
- (3) $\overline{\lim} A_n = \overline{\lim} (A_n)^-$.
- (4) If $A_n = A$ for all $n \in D$, then $\lim_{n \to \infty} A_n = A$.

Now we discuss some relationships between two L-nets in $(L(M), \eta)$. From Definition 2. 1 we have

Theorem 2. 7. Let $\{A_n : n \in D\}$ and $\{B_n : n \in D\}$ be two L-nets $(L(M), \eta)$, then

- (1) If $A_n \leq B_n$ for every $n \in D$, then $\lim A_n \leq \lim B_n$, $\overline{\lim} A_n \leq \overline{\lim} B_n$
- (2) $\overline{\lim}(A_n \vee B_n) = \overline{\lim}A_n \vee \overline{\lim}B_n$ (3) $\lim(A_n \vee B_n) \geqslant \lim A_n \vee \lim B_n$
- $(4) \quad \overline{\lim}(A_n \wedge B_n) \leqslant \overline{\lim}A_n \wedge \overline{\lim}B_n \qquad (5) \quad \underline{\lim}(A_n \wedge B_n) \leqslant \underline{\lim}A_n \wedge \underline{\lim}B_n$
- (6) If $\{B_n : n \in D\}$ is convergent, then $\overline{\lim}(A_n \vee B_n) = \overline{\lim}A_n \vee \overline{\lim}B_n$ and $\underline{\lim}(A_n \vee B_n) = \underline{\lim}A_n \vee \overline{\lim}B_n$
- (7) If $\{A_n : n \in D\}$ and $\{B_n : n \in D\}$ are both convergent, then so is $\{A_n \lor B_n : n \in D\}$, and $\lim (A_n \lor B_n) = \lim A_n \lor \lim B_n$
- (8) If $\{A_n \vee B_n : n \in D\}$ is convergent, and if $\overline{\lim} A_n \wedge B$ $\overline{\lim}_n = 0$, then $\{A_n : n \in D\}$ and $\{B_n : n \in D\}$ are both convergent.

Next we disucuss relationships between an L-net and its subnets.

Definition 2. 3. Let $\triangle = \{ \triangle(n) : n \in D \}$ and $T = \{T(m) : m \in E \}$ be two L-nets in (L (M), η). T is called a subnet of \triangle if there exists a mapping $N:E \longrightarrow D$ such that (1) $T = \triangle oN$, (2) for each $n \in D$ there is an $m \in E$ with $N(k) \ge n$ whenever $k \ge m$ ($k \in E$).

Theorem 2. 8. Let $\{B_m : m \in E\}$ be a subnet of $\{A_n : n \in D\}$, then

- (1) $\lim A_n \leqslant \lim B_m$
- $(2) \quad \overline{\lim} B_{\bullet} \leqslant \overline{\lim} A_{\bullet}$
- (3) If $\{A_n : n \in D\}$ converges to A, then every subnet also converges to A.

The theorem follows directly from Definition 2. 2 and Definition 2. 3.

Theorem 2. 9. Let $\{A_n : n \in D\}$ be an L-net and $G = \{T : T = \{B_m : m \in E\}$ is a subnet of $\{A_n : n \in D\}\}$, then

$$(1)\underline{\lim} A_n = \bigwedge_{T \in \sigma} \overline{\lim} B_m \qquad (2)\overline{\lim} A_n = \bigvee_{T \in \sigma} \underline{\lim} B_m$$

Proof. Using Theorem 2. 1 and Theorem 2. 8, we have $\underline{\lim} A_n \leq \underline{\lim} B_m \leq \overline{\lim} B_m$ for every subnet $T = \{B_m : m \in E\}$ of $\{A_n : n \in D\}$, we clearly have $\underline{\lim} A_m \leq \bigwedge_{T \in G} \overline{\lim} B_m$.

Conversely, suppose that $e \not\equiv \underline{\lim} A_m(e \in M)$, then there is a $P \in \eta(e)$ such that for all m in D, we can choose $n(m) \geqslant m$ with $A_{n(m)} \leqslant P$. Let $\{B_m : m \in D\}$ be diffined by $B_m = A_{n(m)}$, Then $\{B_m : m \in D\}$ is a subnet of $\{A_n : n \in D\}$ and $B_m \leqslant P$ for each $m \in D$. i. e. $e \not\equiv \overline{\lim} B_m$. This means that $\bigwedge_{T \in G} \overline{\lim} B_m \leqslant \underline{\lim} A_n$. So the proof of (1) is complete.

Another equality can be similarly proved.

Theorem 2. 10. If every subnet of $\{A_n : n \in D\}$ in $(L(M), \eta)$ has a subnet converges to A, then $\{A_n : n \in D\}$ converges to A.

Proof. Let $T = \{B_m : m \in E\}$ be arbitrary subnet of $\{A_n : n \in D\}$, T has a subnet $\{C_i : i \in F\}$ with $\lim_{t \to \infty} C_i = A$. In the light of theorem 2. 8, $\lim_{t \to \infty} B_m \le \lim_{t \to \infty} C_i = \lim_{t \to \infty} C_i = A$, and so $\lim_{t \to \infty} A_n = V$ $\lim_{t \to \infty} B_m \le A$ by Theorem 2. 9 and arbitrariness of T. On the other hand, in accordance with Theorem 2. 8 we know that $A = \lim_{t \to \infty} C_i \le \lim_{t \to \infty} B_m$ and hence $A \le A$ $\lim_{t \to \infty} B_m = \lim_{t \to \infty} A_n$ on account of Theorem 2. 9. Therefore $\lim_{t \to \infty} A_n = A$.

3. Some Applications

In this section, we prove some interesting characterizations with regard to closed elements and continuous generalized order—homomorphisms by making use of the convergence theory of L-nets.

Theorem 3. 1. Let $(L(M), \eta)$ be a topological molecular lattice and $A \in L$. Then the following con-

ditions are equivalent:

- (1) A is closed:
- (2) $\overline{\lim} A_n \leq A$ for every L-net $\{A_n : n \in D\}$ in A;
- (3) $\underline{\lim} A_n \leq A$ for every L-net $\{A_n : n \in D\}$ in A.

Proof. (1) \Rightarrow (2); let A be closed element and $\{A_n: n \in D\}$ be an L-net in A. If $e \le \overline{\lim} A_n(e \in M)$, then for each $P \in \eta(e)$ and each $n \in D$ there is an $m \in D$ satisfying $m \ge n$ and $A_m \not\equiv P$. As a result, $A \not\equiv P$ by virture of the fact that $\{A_n: n \in D\}$ is in A. For this $e \le A^- = A$, and so $\overline{\lim} A_n \le A$.

- (2) \Rightarrow (3): From Theorem 2. 1 and Condition (1) we have $\underline{\lim} A_n \leqslant \overline{\lim} A_n \leqslant A$.
- $(3)\Rightarrow(1)$; Presume that Condition (3) are true, then for each moleculae $e\in M$ with $e\leqslant A^-$, there exists a molecular $net\{S(n),n\in D\}$ in which converges to e in line with Theorem 4. 22 in [4]. Hence according to Theorem 4. 21 in [4] and Condition (3), $e\leqslant A$, i. e. $A^-\leqslant A$ and hence $A=A^-$.

Definition 3. $1^{[4]}$. Let $f:(L(M),\eta) \longrightarrow (L_1(M_1),\eta_1)$ be a generalized order-homomorphism.

- (1) f is said to be continuous if $\forall Q \in \eta_1$ we have $f^{-1}(Q) \in \eta$.
- (2) f is said to be continuous at point $e \in M$, if $\forall Q \in \eta_1(f(e))$ we have $(f^{-1}(Q)) = \eta(e)$.

Theorem 3. 2. Suppose that $f:(L(M),\eta)\longrightarrow (L_1(M_1),\eta_1)$ is a generalized order-homomorphism. Then the followings are equivalent:

- (1) f is continuous;
- $(2) \quad \forall \ A \in L, f(A^-) \leq (f(A))^-;$
- (3) $\forall B \in L_1, (f^{-1}(B))^- \leq f^{-1}(B^-);$
- (4) $\forall e \in M, f \text{ is continuous at } e$:
- (5) For any L-net $\{A_n : n \in D\}$ in $(L(M), \eta), f(\lim A_n) \leq \lim f(A_n)$:
- (6) For every L-net $\{B_n : n \in D\}$ in $(L_1(M_1), \eta_1)$, $\lim_{n \to \infty} f^{-1}(B_n) \leqslant f^{-1}(\lim_{n \to \infty} B_n)$;
- (7) For every L-net $\{A_n : n \in D\}$ in $(L(M), \eta), f(\overline{\lim} A_n) \leq \overline{\lim} f(A_n)$;
- (8) For each L-net $\{B_n : n \in D\}$ in $(L_1(M_1), \eta_1)$ $\overline{\lim} f^{-1}(B_n) \leqslant f^{-1}(\overline{\lim} B_n)$.

Proof. $(1) \Leftrightarrow (2) \Leftrightarrow (3)$: The proof is straightforward and is omitted.

- (3) \Rightarrow (4):Let e \in M and P \in η (f(e)). Then by (3) we have (f⁻¹(P))⁻ \leqslant f⁻¹(P)=f⁻¹(P), and hence f⁻¹(P)=(f⁻¹(P))⁻ \in η (e).
- (4) \Rightarrow (5); Let $\{A_n: n \in D\}$ be an L-net in $(L(M), \eta), e \in M$ and $e \leq \underline{\lim} A_n$. Then for each $P \in \eta(f(e)), (f^{-1}(P))^- \in \eta(e)$ in line with Condition (4) and Definition 3. 1,

and then there exists an $n_o \in D$ such that $A_n \nleq (f^{-1}(P))^-$, specially, $A_n \nleq f^{-1}(P)$ for all $n \geqslant n_o$. Since $A_n \nleq f^{-1}(P)$ implies $f(A_n) \nleq P$ for all $n \geqslant n_o$. $f(e) \leqslant \underline{\lim} f(A_n)$ by Theorem3. 1. This means that $f(\underline{\lim} A_n) \leqslant \underline{\lim} f(A_n)$

- (5) \Rightarrow (6):Provided that $\{B_n: n \in D\}$ is an L-net in $(L_1(M_1), \eta_1)$, then from Condition (5) we know that $f(\underline{\lim} f^{-1}(B_n)) \leq \underline{\lim} f^{-1}(B_n) \leq \underline{\lim} B_n$. Hence $\underline{\lim} f^{-1}(B_n) \leq f^{-1}(\underline{\lim} B_n)$.
- $(6)\Rightarrow (1)$; Suppose that Q is a closed element in η_1 and that $\{B_n: n\in D\}$ is an Lnet in Q. On account of Theorem3. 1 $\underline{\lim}B_n\leqslant Q$. Hence by using Condition(6) we have $\underline{\lim}f^{-1}(B_n)\leqslant f^{-1}(\underline{\lim}B_n)\leqslant f^{-1}(Q)$, and so $f^{-1}(Q)$ is closed in η , in the light of Theorem3. 1 and by Definition3. 1, we know that f is continuous.
- $(4)\Rightarrow (7), (7)\Rightarrow (8)$ and $(8)\Rightarrow (1)$ are similar to $(4)\Rightarrow (5), (5)\Rightarrow (6)$ and $(6)\Rightarrow (1)$ respectively. We omit these proofs.

References

- [1] Chen Shuili and Cheng Jishu, On convergence of nets of L-fuzzy sets, J. Fuzzy Mathematics, 2(3)(1994)517-524.
- [2] Cheng Jishu and Chen Shuili, Theory of R-convergence of nets in fuzzy lattices and its applications, BUSEFAL, 55(1993)60-66.
- [3] Chen Shuili and Cheng Jishu, The characterizations of semi-continuous and irresolute order—homomorphisms On fuzzes, Fuzzy Sets and Systems, 64(1994)105—112.
- [4] Wang Guojun, Theory of topological molecular lattices, Fuzzy Sets and Systems, 47 (1992)351-376.
- [5] R. D. Sarma and N. Ajmal, Fuzzy nets and their applications, Fuzzy Sets and Systems, 51(1992)41-52.
- [6] Wand Guojun, Theory of L-fuzzy topological spaces, Shaaxi Normal University Press, 1988.
- [7] Wang Guojun, Order homomorphisms on fuzzes, Fuzzy Sets and Systems, 12(1984)281 —288.
- [8] S. Mrowka, On convergence of nets of sets, Fund. Math., 45(1958)237-246.