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Abstract : In this paper,we introduce the concepts of L-nets and its convergence in topological molecu-
lar lattices™J, which is a generalization of the paperst'**5],and systematically discuss their properties
and the characterizations of continuous generalized order—homomorphism by means of convergence
the theory of L-net.
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1. Preliminaries

Throughout this paper,L and L, will denote completely distributive lattices,M and
M, will denote the set of all moleculae in L and L, respectively , while (L.(M),n)and (L,
(M), m)denote topological molecular lattices(*], the elements of n or n, will be called
closed elements. Since there is no ‘pseudo— complement’ ,open and closed element are
not dual concepts. A~ will denote the closure of A€ L,n(e) = {PE nie£P) and the ele-
ments in n(e) are said to be R-neighborhood of e € M.

2. Convergence of L-nets

In this section, we introduce the notions of limit points, cluster points and conver-
gence of L-net, systematically discuss various properties of them,and so establish the
convergence theory of L-nets.

Definition2. 1. Let (D,<)be a directed set. Then the mapping S:D —>L is called L- |
net in L. For each n€ D, put S(n) =A,, then the net S will be denoted by {A, :n€D}.

Definition2. 2. Let {A,:nED} be an L-net in(L(M),n) and eEM.
(1) e is called a limit point of {A,:n€E D)}if for each PE n(e) ,there is an meE
D such that A,zP for all n>m.
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(2) e is called a cluster point of {A,;nED)} if for each PE n(e) and each nE€
D,there is an m& D such that m=>n and A,Z£P.

(3) limA, is the union of all limit points of {A,:nED).

(4) 1limA, is the union of all cluster points of {A,:n€ED}.

(5) If imA,=1limA,=A, then we say that A is the limit of {A,;nED} or say
that{A,:n€ D} converges to A,in symbol limA,=A.

From Definition 2. 2 we have
Theorem2. 1. Let{A.:n € D}be an L-net in (L(M) ,7) ,then

lim A, <hmA,

Theorem2. 2. Let{A,:n € D}be an L-net in (L(M),n) ,and e€ M.
(1)  exlimA, iff e is a bmit point of {A,:nE D)
(2) e<ClmA, iff e is a cluster point of {A.:rE D)

Proof. (1)In case ex(limA, and P€ n(e). Since ez£P implies limA,3P,we have a lim-
it point b of {An:n€D}with b¥£P i. e. PE n(b) ,therefore there exists an m €D such
that A.3EP for all n=>m. This shows that e is a limit point of {A,;n€D}. Conversely,
if e is a limit point of {A,;n€ED},then e<limA, by Defintion2. 2.

(2) The proof is similar to that of (1).

Corollary?2. 3. Let{A,:n € D}be an L-net in (L(M), 1) ,then kimA,= A iff the followings
hold .

(1) If eCA,then e is a bimit point of {A,;nED};

(2) If e is a cluster point of {A,:n€E D} ,then e<_A.

Theorem?2. 4. Let{ A, :n€ D} is an L-net in (L(M) ,n)>then Bomd,— é\n(_\é_A;)”

Proof. From Definition2. 2 and Theorem2. 2 we have e<(limA, iff for each P € n(e)
and each n€ D, there is an m € D such that m—>n and A,z£P iff for each PE n(e) and
each n& D there exists an m € D such that \é AnZEP iff for each n€D,e<( \;A.,.)“

iff e A (V Ap)—,where eEM.
n€ED mzn

Theorem2. 5. Let{A.:n€ D}be an L-net in (L(M),n),put Q= {H.H is an arbitrary cofi-
nal subset of D). Then
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mA,= A (V A)~

HEQ mEH

Proof. If e limA, and PE€ n(e) ,then we have n,€ D satisfying A, =P for all n-=n,.
Arbitrarily choose a cofinal subset H of D,then there exists an mé& H such that m—=n,
and A,3£P. This implies that e<C( V A,)~ and so limA,<< A (V Al)~.

mEH -

HEQ mEH
Conversely , now suppose ¢ is not in limA,,i. e. ezElimA,. then there is a PE n(e)

such that for all n in D we can choose m(n)>n with Am(’n)gP. Let H)={m(n):n€

D}. It is clear that H, is a cofinal subset of D for which V Amcy<CP. Hence e
m(n)EH’

( V. Anm) and hence A (V An)~<limA,.
m(n)eH’ HEQ meH [
Corollary?2. 6. Let {A,:nE€ D} is an L-net in (L(M),7) ,then
(1)  lmA, and limA, are closed elements in (L(M) ,7).
(2) bmA,=bm(A)~.
(3) tmA=km(A)".
(4) If Av=A for all € D, then limA,= A.

Now we discuss some relationships between two L-nets in (L(M),n). From Defini—
tion2. 1 we have '
Theorem2. 7. Let {A,:#E€ D} and {B.:n€ D}be two L-nets (L(M) ,1) ,then

(1) If AB. for every € D, then timA,<kmB, ,EmA,<EmbB,

(2) &m(AVB)=EmA,VEmB, (3) #m(A,V B)>kmA,V kmB,

(4) Em(ANABI<EmA NEmB,  (5) Gm(A.\B.)<thimA, \ kmB,

(6) If{B.:n€ D} is convergent, then km (A, \ B.) =kmA, \/ kmB, and km(A,\ B,)
=tmA, \ timB,

(7> If{A.:n€D}and {B.:n€ D} are botk convergent, then 50 is {A,\ B.;nE D} ,and
km (A, B,) =HtmA, \/ kmB,

(8) If{AV B.:n€ D}is convergent, and if tinA, A\ B lon,=0,then{ A, ; n € DYand
{B.:nE D)} are both convergent.

Next we disucuss relationships between an L-net and its subnets.
Definition2. 3. Let A= {A(n);:n€D}and T={T(m);mEE)}be two L-nets in (L
(M) ,n). T is called a subnet of A\ if thene exists a mapping N :E—D such that (1)
T=/\oN, (2)for each n €D there is an m € E with N(k)=n whenever k=>m (k&
E).
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Theorem?. 8. Let {B.:mE E} be a subnet of {A,:nE D) ,then
(1) UbmA.<bmB,
(2) TmB.<lmaA,
(3) If {A.:n€ D}converges to A,then every subnet also converges to A.
The theorem follows directly from Definition2. 2 and Definition2. 3.

Theorem2. 9. Let {A,:n€ D}be an L-net and G= {T:T={Bu.:mE E}is a subnet of {A,:n
€D}},then

(1)tmA,= A\ &mB.  (2)kmA,= \ EmB,

TEG TEQ

Proof. Using Theorem2. 1 and Theorem2. 8,we have limA, Q_H_EB...QEB,, for every
subnet T={Bn:mEE} of {A,;:nED},we clearly have 11_'m_A,..<T/e\G 1imB.,.

Conversely ,suppose that e£limA,, (e € M) ,then there is a PE n(e) such that for
all m in D, we can choose n(m)=m with A,m)<(P. Let {B,:m&D}be difined by B,
= Anm »Then {B,:mE D}is a subnet of {A,:nE€D}and B,,<{P for each mED.i.e. e
%1imB,,. This means that T/E\G 1limB,<limA,. So the proof of (1) is complete.

Another equality can be similarly proved.

Theorem2. 10. If every subnet of {A.:nE€ D} in (L(M),n) hasa subnet converges to A ,then
{A.:n€E D} converges to A.

Proof. Let T= {B..:m & E}be arbitrary subnet of {A,;nED},T has a subnet{C;;iEF)
with lim C;=A. In the light of theorem2. 8, limB,<limC,=1imC,=A,and so imA,
= V 1limB,<CA by Theorem2. 9 and arbitrariness of T. On the other hand,in accor-
TEG —
dance with Theorem2. 8 we know that A =1imC, =1imC,;<limB,, and hence A<< /e\
TEG

limB, =1imA. on account of Theorem2. 9. Therefore limA,=A.
3. Some Applications

In this section,we prove some interesting characterizations with regard to closed el-
ements and continuous generalized order —homomorphisms by making use of the conver-
gence theory of L-nets.

Theorem3. 1. Let(L(M) , n)te a topological molecular lattice and AE L. Then the following con-
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ditions are equivalent ;
(1) A is closed;
(2) UtmA, <A for every L-net{A,:nE D) in A;
(3) UmA. A for every L-net{A,.nE D}in A.

Proof. (1)=>(2):let A be closed element and {A,:nE€ D}be an L-net in A. If e<<
1imA, (e €M), then for each PE n(e) and each n €D there is an m € D satisfying m>
n and A,3EP. As a result, AP by virture of the fact that {A,:n€ED)}is in A. For this
e<CA™ =A,and so limA,<CA.

(2)=(3) :From Theorem2. 1 and Condition(1) we have imA,<{IimA,<CA.

(3)=(1) :Presume that Condition(3) are true,then for each moleculae eEM
with e <CA ™, there exists a molecular net{S(n) ;nE€ D} in which converges to e in line
with Theorem4. 22 int*). Hence according to Theorem4. 21 in(*] and Condition(3) ,e<S
A,i.e. A"CA and hence A=A".

Definition3. 1041, Let £: (L(M),n)—(L,(M;),m ) be a generalized order-homomor-
phism.

(1) f is said to be continuous if Y QE 1, we have £~1(Q)En

(2) f is said to be continuous at point e €M, if ¥ QE 1, (f(e)) we have (f~!
Q) €n(e).

Theorem3. 2. Suppose that f . (L(M) ,n)—>(Li(M;) ,7,)is a generalized order-homomor-
phism. Then the followings are equivalent .

(1) f is continuous;

(2) VAEL,f(ATIK(F(A));

(3) VBEL,(fF'(B)"Kf(B7);

(4) V e€E M, is continucus dt e;

(5)  For oy L-net{A,:n€ D}in (L(M),n),f(BmA)<lmf(A4.);

(6) For every L-net{B.:n€ D}in (Li(My) ,m) ,lmf~ (BI<f'(mB,);

(7)  For every L-net {A.;n€ D}in (L(M),n) ,f (bmA) <lmf(A.);

(8) For each L-net {B,:n€ D}in (Li(M1),m) Gmf~'(B)S' (BmB.),
Proof. (1)&(2)&3(3) : The proof is straightforward and is omitted.

(3)=>(4):Let eEM and PE n(f(e)). Then by (3) we have E1P)) <!
(P~)=£"1(P),and hence f~!(P) = (f~1(P))~ € n(e).

(4)=(5):Let {A,:nED}be an L-net in (L(M),n),eEM and e limA,. Then
for each PE€ n(f(e)), (7! (P))~ €n(e) in line with Condition(4) and Definition3. 1 ’
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and then there exists an n, € D such that A, (f~! (P))~, specially , A,==£~! (P) for
all n=>n,. Since A,£f~!(P) implies f(A,) =P for all n>>n,. f (e)<limf(A,) by Theo-
rem3. 1. This means that f(limA,)<(limf(A,) .

(5)=>(6) :Provided that {B,:n€ D}is an L-net in (L;(M;),m),then from Con-
dition (5) we know that f (limf~! (Bx)) < limff~! (B,) < limB,. Hence Limf~ (B,) <<
f~'(limB,).

(6)=>(1) :Suppose that Q is a closed element in m; and that {B,:n€D}is an L-
net in Q. On account of Theorem3. 1 1imB,<{Q. Hence by using Condition(6) we have
Limf~! (B.) <<f 7' (imB, ) <Xf ' (Q) ,and so £~1(Q) is closed in n,in the light of Theo-
rem3. 1 and by Definition3. 1,we know that f is continuous.

(4)=(7),(7)=>(8) and (8)=>(1)are similar to (4)=>(5) ,(5)=>(6) and
(6)=>(1)respectively. We omit these proofs.
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