Crispification: Defuzzification of Intuitionistic Fuzzy Sets

Plamen Angelov

Centre of Biomedical Engineering
105, Acad.G.Bonchev str., Sofia - 1113, BULGARIA
tel.: +359 (2) 713 3611 fax.: +359 (2) 723 787 e-mail: clbme@bgcict.bitnet

Abstract A new operation under intuitionistic fuzzy sets is defined in the paper. *Crispification* is analogical to the defuzzification operation of fuzzy sets. Its introduction allows development of various engineering applications of intuitionistic fuzzy sets: in control, optimization, expert systems etc. Four different definitions of this operation are introduced and analyzed.

Key words: intuitionistic fuzzy set, defuzzification, center of area, mean of maximum, BADD method

1. Introduction

Intuitionistic fuzzy set (IFS) [1] is an extension and generalization of the ordinary fuzzy set concept. It considers not only the degree of membership to a given set, but also the degree of non-membership such that the sum of both values is less than one [2]. In the last decade various applications of IFS concept to different fields have appeared: in classification [3,4], decision making [5], optimization [6,7], expert systems [8,9], logic programming [10,11], systems theory [12], graph theory [13], generalized net theory [14], neural networks [15] etc..

From the other hand, the apparatus of IFS is not full and is under investigation. The purpose of this paper is to introduce and analyze some definitions of *crispification* which is an analog to the basic operation of fuzzy sets - defuzzification. This definitions in combination with the conjunction and disjunction operations in IFS [2] allow to develop new engineering applications of IFS such as intuitionistic fuzzy (IF) controllers, IF expert systems etc.

2. Crispification: definitions

For a fixed universe E, the IFS (A) can be interpreted as a mapping $E \longrightarrow [0;1]x[0;1]$ and it can be defined by a pair $<\mu_A$; $\nu_A>$ where for $x\in E$ $\mu_A(x)$ denotes the degree of membership of x to the set A and $\nu_A(x)$ - the degree of non-membership of x to A; and $\mu_A(x)$ and $\nu_A(x)$ satisfy the condition: $\mu_A(x) + \nu_A(x) \le 1$. The set B is fuzzy set, in case when $\mu_B(x) + \nu_B(x) = 1$. Now, by analogy with defuzzification operation of fuzzy sets, we introduce crispification operation as a map $[0;1]x[0;1] \longrightarrow R$, where R is the set of real numbers. Here it will be treated IFSs over universe E=R. The result of this operation is a crisp value which is representative for the given IFS as whole. This operation is necessary in controllers to derive the final control action (fuzzy or IF

set-point can not be given to the servo in a control system) which will be realized. It is necessary also in decision making and expert systems for elicitation of information.

In fuzzy set theory, two basic defuzzification operators exist: center of area (COA) and mean of maximum (MOM) [16]. COA defuzzification is defined as follows:

$$x_{COA}^* = \frac{\sum_{i=1}^{N} \mu(x_i) x_i}{\sum_{i=1}^{N} \mu(x_i)}$$

$$N = card(x_i)$$

where x* denotes defuzzified (crisp) value

MOM defuzzification method is given by:

$$x_{MOM}^{*} = \frac{\sum_{j=1}^{M} x_{j}^{m}}{m} \qquad x^{m} = \{x \mid \mu(x^{m}) = \max_{i=1}^{N} \mu(x_{i})\}$$

where M denotes number of maximums

Fig.2

Recently, these two operators was successfully generalized by so called BADD operator [9]:

$$x_{\text{BADD}}^* = \frac{\sum_{i=1}^{N} \mu^{\alpha}(x_i) x_i}{\sum_{i=1}^{N} \mu^{\alpha}(x_i)} \qquad \alpha \in [0; \infty)$$

where α denotes power coefficient

It should be mentioned that for $\alpha=1$ BADD implies COA and for $\alpha \longrightarrow \infty$ it approaches MOM method.

By analogy, three crispification operators are defined in the paper: IF_COA, IF_MOM, MOE (mean of extremum), IF_BADD (IF_xxx means Intuitionistic Fuzzy version of xxx). The COA crispification operation over IFS is defined as follows

$$x_{\text{IF_COA}}^{0} = \frac{\sum_{i=1}^{N} (\mu(x_i) - \nu(x_i))x_i}{\sum_{i=1}^{N} (\mu(x_i) - \nu(x_i))} \qquad N = \text{card}(x) \qquad \text{for} \qquad \mu(x_i) > \nu(x_i)$$

This operator is defined basing on the difference between the degree of membership and non-membership which have to be positive.

The IF_MOM operator is defined by analogy with the MOM defuzzification operator over $(\mu(x_i)-\nu(x_i))$. Obviously, it guarantees the maximization of $\mu(x_i)$ and minimization of $\nu(x_i)$.

$$x_{\text{IF_MOM}}^{0} = \frac{\sum_{j=1}^{L} x_{j}^{l}}{2L}$$

$$x^{l} = \{x \mid \mu(x^{l}) - \nu(x^{l}) = \max_{i=1}^{N} (\mu(x_{i}) - \nu(x_{i}))\}$$

A new operator (by differ from defuzzification) MOE is introduced which averages all points with maximal $\mu(x_i)$ (the most acceptable points) and these with minimal $\nu(x_i)$ (the less non-acceptable):

$$x_{MOE}^{0} = \frac{\sum_{j=1}^{M} x_{j}^{m}}{2M} + \frac{\sum_{j=1}^{K} x_{j}^{k}}{2K} \qquad x^{m} = \{x \mid \mu(x^{m}) = \max_{i=1}^{N} \mu(x_{i})\}$$

$$x^{k} = \{x \mid \nu(x^{k}) = \min_{i=1}^{N} \nu(x_{i})\}$$

$$\mu, \nu$$

$$0$$

$$\mu$$

Fig.3

Finally, we introduce an analog of BADD operator over $\mu(x_i)-\nu(x_i)$:

$$x_{\text{IF_BADD}}^{0} = \frac{\sum_{i=1}^{N} (\mu(x_i) - \nu(x_i))^{\alpha} x_i}{\sum_{i=1}^{N} (\mu(x_i) - \nu(x_i))^{\alpha}} \qquad \text{for } \mu(x_i) > \nu(x_i)$$

3. Crispification: properties

The basic features of these operators are similar with these of their analogs:

The IF_COA operator gives all possible solutions in which the degree of acceptance is higher than the degree of non-acceptance ($\mu(x_i) > \nu(x_i)$). However, it averages good and poor solutions (although it gives them different weights).

The IF_MOM and MOE operations gives information about the best solution(s) (MOE gives it in the sense of higher degree of acceptance and lower degree of non-acceptance). However they ignore information about the rest possible solutions.

The IF BADD operator has the analogical property as BADD defuzzification operator:

- it implies IF_COA operator for $\alpha=1$ (it implies COA, if $\nu=0$ also);
- it approaches IF_MOM operator for $\alpha \longrightarrow \infty$ and approaches MOM when $\nu=0$ also;
- it implies middle average (MA) when α =0:

IF_BADD(
$$\alpha$$
=1; ν >0) = IF_COA
IF_BADD(α =1; ν =0) = COA
IF_BADD(α ---> ∞ ; ν >0) = IF_MOM
IF_BADD(α ---> ∞ ; ν =0) = MOM
IF_BADD(α = 0) = MA

α/ν	0	positive
0	IF_COA	COA
1	IF_MOM	MOM
∞	MA	

Table 1

4. Conclusion

A new operation under intuitionistic fuzzy sets is defined in the paper. *Crispification* is analogical to the defuzzification operation of fuzzy sets. These definitions will be very helpful for development of various engineering applications of intuitionistic fuzzy sets: in control, optimization, expert systems etc. Four definitions are introduced and analyzed. They have analogical properties with defuzzification operators.

Acknowledgments

The author is thankful to Prof.Dr. Krasimir Atanassov for his fruitful remarks and discussion.

References

- [1] Atanassov K., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems 20 (1) (1986) 87-96
- [2] Atanassov K., G.Gargov, On the Intuitionistic Fuzzy Logic Operations, *Notes on Intuitionistic Fuzzy Sets* 1 (1) (1995) 1-4
- [3] Kuncheva L., An Intuitionistic Fuzzy k-Nearest Neighbors Rule, Notes on Intuitionistic Fuzzy Sets 1 (1) (1995) 56-60
- [4] Asparoukhov O., Intuitionistic Fuzzy Interpretation of Two-Level Classifiers, *Notes on Intuitionistic Fuzzy Sets* 1 (1) (1995) 61-65
- [5] Bustince H., Handling Multicriteria Fuzzy Decision Making Problems Based on Intuitionistic Fuzzy Sets, *Notes on Intuitionistic Fuzzy Sets* 1 (1) (1995) 42-47
- [6] Angelov P., Optimization in an Intuitionisti Fuzzy Environment, *Notes on Intuitionistic Fuzzy Sets* 1 (3) (1995) to appear
- [7] Atanassov K., Ideas for Intuitionistic Fuzzy Sets Equations, Inequalities and Optimization, Notes on Intuitionistic Fuzzy Sets 1 (1) (1995) 17-24
- [8] Atanassov K., Intuitionistuic Fuzzy Sets and Expert Estimatiions, BUSEFAL 55 (1993) 67-71
- [9] Atanassov K., Remark on Intuitionistic Fuzzy Expert Systems, BUSEFAL 59 (1994) 71-76
- [10] C.Georgiev, K.Atanassov, Logic Programming with Intuitionistic Fuzziness, BUSEFAL 48 (1991) 104-113
- [11] Atanassov K., Georgiev C., Intuitionistic Fuzzy Prolog, Fuzzy Sets and Systems 53 (1) (1993) 121-128
- [12] Atanassov K., Intuitionistic Fuzzy Systems, BUSEFAL 58 (1994) 92-96
- [13] Shannon A., K.Atanassov, Intuitionistic Fuzzy Graphs from α -, β and (α, β) -levels, *Notes on Intuitionistic Fuzzy Sets* 1 (1) (1995) 32-35
- [14] Hadjyisky L., K. Atanassov, Generalized net Model of the Intuitionistic Fuzzy Neural Networks, *Advances in Modeling & Analysis*, *AMSE Press* 23 (2) (1995) 59-64
- [15] Hadjisky L., K. Atanassov, Intuitionistic Fuzzy Model of a Neural Network, BUSEFAL 54 (1993) 36-39
- [16] Filev D, R. Yager, A Generalized Defuzzification Method via BAD Distributions, *International Journal of Intelligent Systems* 6 (1991) 687-697