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"Abstract

The formal theory of fuzzy logic suggested by V. Novak [1] is
considered. The class of all logical functions is described.

Introduction.

This work is devoted to the desoription of  the funotional
system in fuzzy logic. The formal “theory of first-order fuzzy
logic is suggested by V. Novak [1]. Here we oonsider fuzzy
propositional calculus which is closely oconnected with the
functional system of fuzzy logic. Namely, the functional system is
a semantic component of fuzzy propositional caloulus . As concerns
first-order fuzzy logic, its semantics is more complex and must
include not only functional interpretations of logical conneotives
but also interpretations of functional and prediocate symbols.

Puzzy logic is a generalization of olassiocal one. The main
difference between fuzzy and olassioal logic is in the set of
truth values. There are only two truth values in ©classical logic:
0 (false) and 1 (true). Fuzzy logic has more than two truth
values. That's why fuzzy logic is also ocalled by many-valued
logic. Usually the set of truth values is denoted by L. In this
work we consider continuum-valued logic whose truth value set is
the interval [o0,1].

In practice such an extension of the set of truth values is
necessary when it is diffiocult to determine whether a proposition
is true or false. Por example we consider the proposition "Mr X ts
old". Let us denote the afe.or Mr X by a. If a is small (close to
0) then X is a ohild and there is no doubt that the proposition is
false, otherwise if a is large (more than 80) then the proposition
is true . But what should we decide if a=30 or a=50 ? We oould
agree to consider that X is old if o is more than some threshold
number but such an agreement discords with a continuous character
of getting older.

Fuzzy logic suggests more natural way of description for the
properties like "to be old". Namely, we use the truth values
between 0 and 1, i.e between false and true. In our example we can
consider that X is old in degree 1-ezp(-a/40) where a is the age
of Mr X:
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0f course, other variants of truth valuation for this
proposition are possible.

Puzzy logic as well as oclassical one operates with
constructions of a special language named formulas. The language
of a propositional caleculus consists of proposition variables,
logical connectives and auxiliary symbols (parentheses).

A proposition variable is one whose values may be propositions.
We assume that proposition variables form a countable set and use
the notations X1.X2.... for them. A proposition variable is a

simple (atomic) formula.
Logical connectives are the symbols which join simple formulas

into complex ones. There are the following logical comnectives in
classiocal logic:

= binary: ~ (conjunction), - (disjunction), = (implication);
- unary: - (negation);

In ocomparison with the classical case fuzzy propositional
calculus is enriched by the symbols of proposition constants
(a,aeL} and the binary conneotive &.

Formulas define as usual:

(a) A1l the proposition variables and constants are formulas;
(b) If 4 and B are formulas then -4 and (4«B) are formulas
where » is a binary conneotive.

For example, -(x1-o(xavx1)) is a formula but &(x1-:x2 ) is not a

formala.

Usually the urnecessary parentheses are omitted. Por example,
X1AX2 is usually written instead (X1Ax2).

Let 4 be a formula. ILet us write A(X ... .Xn) if only > S <X
have appearances in 4 and the other proposition variables have no
appearance in 4. .

The definition of truth functions is a generalization of
analogous definition in classical logic. Namely, we introduce the
algebraic operations on L corresponding to each of the logical
connectives. Considering 1 with these operations we obtain the
algebra of truth values
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L=<LlAiv0ﬂl®D_-)'{a.aEL}>
where

- ~ (conjunction), -~ (disjunction), e (multiplication), —
(implication) are binary operations;

- = (negation) is an unary operation;

- {a,aeL} are constants.

We consider the following funotional interpretation of logical
connectives suggested by V. Novak in [1]:

arb=min(a,b);
avb=mazr(a,b);
a®b=(a+b-1)";

a—b = (1-a+b)*;

—a=1-a,
. o if =z<o, '
where g = z if ze[0,1]
1 if =>1.
Let A:A(X1.....Xn) be a formula. Then the truth function of 4
is a funotion fA:LnkaL such that 7,(X)=f, (= v+-.02) is the value

of the expression obtained from 4 by replacing X, with z, (1=¢=n)

and each logiocal comnective with the corresponding operation.
For exampile, fA(z1.z2)=ﬁ(z1—+(22vz1)) is the truth function for

the formula A(X1.X2)=ﬂ(x1-»(Xévx1)). Note that fA(z1.za)=o for any
z,.z,€L. It means that the formula is always false.

Let us denote the class of truth functions of all formulas by B
and call it by the class of fuzzy logic functions. It follows from
the definition that this olass consists of all superpositions of
the operations ~,v.=,e,— and the constants.

In classical logic as well as in finite-valued logic the olass

of all truth functions coincides with the class of all operations
on the set of truth values. Two questions arise:

1. Does the situation remain in case of 1I=(0,1]?
2. In case it does not, what properties must have an operation
on L to be a truth funotion for some formula?

Evidently, the first question have the negative answer. Indeed,
the cardinality of E is continuum while the c¢lass of all
operations on I is more than continuum. Hence, there are
operations on L which are not fuzzy logic functionms.

The second question is more diffioult. The presented work
suggests the answer of this question.

The work consists of four parts. The Part 1 contains the main
definitions which are necessary for understanding of the obtained
results and their proofs. The Part 2 contains the formulation of
the main result obtained in this work. Parts 3,4 contain the proof
of the main result.
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1. Main Definitions.

Let L be a set of truth values. Assume here that 1=(0.,71].
Define the following operations (connectives) on L (see also [1]):

- binary: ~ (conjunction), - (disjunction), ® (multiplication),
— (implication);
- unary: = (negation);
— nullary: (constants) (a,aeL},
where

arb=min(a,b);
avb=maz(a,b);

a®b=(a+b-1)%;

a—b =_(1—a+b)*;

Ta=1-a;
- { 0 if =z<o,
T = z if =ze(0,1],
1 if =z>1.

So we define the algebra L: L=<L,~,v,m,®,—,(a,aeL)>.

Definition 1. A set D=R™ is a (convex) polyhedron if there are
(myn)-matrix A and m-vector b so that D=(XeR™|Ax<b}.

Let us assume that the elements of A are integers and the
elements of b are real.

Definition 2. A function f:I1P—1 is piecewise 1linear if there

r
are reN and polyhedra D,,...,D such that U D1=Ln and flp .....70p
i=1 1 r

are linear functions, i.e. f(X):CTx+d. xeDi. 1=¢=<p,

for some column-vector ¢ with integer elements and real number 4.
We will name the polyhedra D1,...,Dr by linearity domains of

function pr.
Note that all the piecewise linear functions are continuous.

Let us denote the olass of all n—-ary piecewise linear functions
by K .
n

[+ o]
By the definition K, contains of constants. We define x= U K -
n=0
Definition 3. Let M be a set of operations on . ¥ is closed
class if it is closed with respect to the superposition.

The closed class, generated by the operations from L, will be
denoted by =H.
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Example of a piecewise linear function of one variable:

~
fA(z)

1

Z

o Y, 5.5 VI r—Vv—" @
DT DZ D3

D1,D2 and D3 are the linearity domains for Ty

D1'={deIA115b1}. D2=(del1215b2}. D3=(de|5315b3};

-6 0 -3 -4},
bt o2 v 2 [
fA(XJ=c1x+d1. xeD1. fA(XJ=cax+d2. a:EDa. fA(x)=cax+d3, zeDB;

01-‘-1. d1=0, 02=—1. d2=7, 03:.—2, d3=—1.

Definition 3. Let M be a set of operations on L. ¥ is closed
class if it is olosed with respect to the superposition.

The oclosed class, generated by the operations from L, will be
denoted by =H.

2. The Main Result.

The main result of this work is:

Theorem 1. The class of all piecewise linear functions is equal
to the closed class of operations from L, i.e. K=H.
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3. The Class of Piecewise Linear Functions.

Proposition 1. All the operations from L are piecewise linear
functions.o

Lemma 1. Let f1.....fpeKn. Then there are the polyhedra

r
D,.....D_ such that UD,=z® and D......D are the linearity
r 1=1 1 1 r

domains for each of Tivens .fp.

Proof. Let D._’1 veosoD are the linearity domains of f._,, 1=j=<p.

Jr

J
For any p-tuple B=(i,,..., ip) where 15'&151'
denote

e 158 <0 let us

- =

1 P P
D_=D =D N...nD .

8 11...ip 1:L1 .pip

DB is the polyhedron as it is the intersection of polyhedra. It

is obvious that D8 is the linearity domain for each of 7, ......fp
and U DB:.-Ln.I:I
B

Proposition 2. K is olosed with respect to the superposition.
Proof. (a). It is obvious that all the identity operations are
piecewise linear functions.

(b). Let f1.....fpexn, ger. n,p=1. We'll prove that heK  where
h(x)=5(f1 (x)a-.ogfp(x))'

Based on lemma 1 suppose that 7, .....fp have common linearity

r
domains D,,... .D_, such that U Dian. Let Dj,... .D;i be linearity
i=1
q
domains of g and U Dk=Lp. Consider the mapping f:1%—1P:
k=1
A Ic e STRPIRE e SP LN

It is easy to check that D ik:D iﬁf-1 (D]") is +the polyhedron and

gole is the linear function. Hence, h=gosf is the piecewise linear
ik
funetion.o

The following proposition is the corollary of the propositions 1
and 2:

Proposition 3. H is the subset of K.o
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4. The Class of Fuzzy Logic Punctions.

n
Using the denotation ' tor the set of all mappings from br

n
to L, let us denote Hn=LL ):

n
For Dsi® define the class of functions HDSLI‘ :

Ln
ED={,f€L |3hEHn:hl D=f|D}.

Obviously, HLn=Hn.

Let n=1. Define the oclass D contains of sets Dsi? as:

D=(XeI®| g(X)=1}, g<H_.

Obviously, 1”eD .
n
Lemma 2.
(a). Let D1 .DaeDn. Then D1uD2eDn and HD1UD2=HD1nED2‘
r
n s
(b). Let D1....,DreDn, 1811)1:1' . T;nen feHDi.1s¢sf-. implies reH .
Proof.(a). Let D =(Xel®lg, (X)=1}, D =(XetPlg, (X)=1}, &,,8,H,-
Then D1UD2=(xeLnlg1 (X)vg,(X)=1}, whence D, uD,eD .
‘The inclusion Ep D SHy NHy) is obviously true. We'll prove now
1772 Y1 Yo

that the converse inclusion is true also.

Let feED nHD .Then there exist h.1 .haeHn such that
1 2

J'ID =h, 'D .fID "h'a'D . Let 2 and 1 are some natural numbers. Define
1 1 2 2

the funotion h:1P—1 as:

h(X)=(h (X)®(a, (X)) v (h, X0 (8, (X))%),

where ym dgfyeye...ey (m times), yeL.
Obviously, heH . It can be proved that 7lp up =hlp up_"hen k and
1772 1772

1 are sufficiently 1large. It means that feBp p_- Hence,
172
(b) follows from (a) by induction.o
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Define the functions si:Ln—+L, n=1, keZ, kR=0:

k.. k . *

an(X)—sn(z1..-..zn)—(i§1zi-k) .

Obviously, 0:3;_. We'll use the notation e for eg. As a®b=(na)—b,
then e<H, .

Lemma 3. sﬁgﬂh. n>, k0.
Proof by induction.

O a1
(a). e1=61eH1.

k _ T
(b). Assume that 8n—1€H£r1'k20' Let x=1, x_(w1.....zn) .
. _ T O,v,_ .
X _(x1.....zn_1) .« Then en(x)-w1e...0z :
Kk (z +ek"}(z')41)*=6n(z)eak‘:(x') iz -e¥ L (x)=1,
8 (x )= n n- n n- n-—
n (z +8k (z')—1)*—6n(z)0ek (z') if sk_1(x')=1
n “n-1 T n n-1 n-1 ‘
Obviously, egeﬂn. Using the inductive assumption and Lemma 2(a)
we obtain ekeH .0
n n
Ln n *
Lemma 4. Let feL” , f(X):f(w1.....zn)=(i§1aixi+b) .  a;e2,
12{=n. Then feHh.
Proof. Let x=(z1.....zn)T€Ln and
z':{ T 1? aiZO :
1 T, it ai<o
aj=la,l; b =(b+ ¥ a,}; k=[b+ I a,l,
11 1,8,<0 T ’ 1,8,<0 1

where 1<i{=n, [c] is the integer part of ¢, i.e. the maximal integer
not greater than c, (cl)=c-[c], ceR.
Then

n
4 L[4 Ll *
f(x)—(i§1aizi+b -kR),

where a;_?.o. 12{=n, b'€[0,1] and keZ.

n
Iet q=F 31+1- If k<O then p=1eE. Otherwise 7 1is the
1=1
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superposition of functions 63‘1, negation -, constant b’ and

function sk.m

Now we can prove the main theorem 1 (see p.2), which proposes
Eﬁ’; E=H. Due to the proposition 3, it is sufficient to show,
K<H.

Proof of theorem 1. Let reK , D is the linearity domain of 7

and D=(XeR™|AX<b) where A is the integer (m*n)-matrix and b is the
m~vector. Let @,+....a are the rows of A. Define the funotions

Ln
- R .gm.geL as follows:
*

81(1)=(a.iX—b) . 1=5t=m g 5(1)=-|(s1 (x)v...vsm(x))-

Due to lemma 4, g,.....s,.8<H. But D=(XeR"|g(X)=1). Henoe deD .
It follows from lemma 4 that feH; for any linearity domain D.
Using lemma 2 we obtain feh . It proves that EsH. o
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