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First we state some basic facts concerning the presence and absence of the property of con-
trapositive property for implication operators that are needed in the sequel. This is followed by
the section on relational products and the proof of the theorem concerning the interrelationship
of the mean products computed by EZ, W and KD implication operators.

1 Contrapositivity of Implication Operators

1.1 Basic Notions

Contrapositivity of the implication operator is one of the basic properties of classical 2-valued
(Boolean, crisp) logic. We say that a fuzzy implication operator —; possesses contrapositive
symmetry iff (a —; b) = (1 - b) —; (1 — a).

Not all the many-valued operators that default into crisp logic on the values {0, 1}, retain
this property for the whole range of their values. The following results are well known [1],[2]:

(1.1) Operators —, (S: Standard Strict), —s (L: Lukasiewicz), —¢ (KD: Kleene-Dienes) possess
contrapositive symmetry.

(1.2) Operators —1 (S#: Standard Sharp), —3 (S*: Standard Star, Gédel), —4 (G43: Gaines-
Goguen) lack it.

1.2 Relevance for Applications

If the data that may be processed by fuzzy logic is not contrapositive, then using a ply operator
that has the contrapositive symmetry property leads to the distortion of the results of fuzzy
computations with that data. The results are contaminated by the mathematical artifact, namely
by the contrapositive symmetry that was not present in the original data.

This fact is often ignored, but it may lead to serious distortions of analysis of scientific data.

Let us illustrate the significance of this effect by an example from the domain of medicine. If
the presence of symptom a implies the presence of symptom b, then the absence of the symptom
b implies the absence of the symptom a when the property of contrapositive symmetry holds.

One can describe the absence of disease by the absence of certain signs and symptoms. Then
the concepts of “health” and “disease” are also symmetric. This is, however not true universally.
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If, on the other hand, the property of contrapositive symmetry does not hold, it is not possible
any more to infer the absence of the symptom a from the absence of the symptom b.

Because in a number medical problems the contrapositive property of data does not hold
universally, using a contrapositive operator on non-contrapositive medical data may produce mis-
information that may have very serious consequences for the patient. Hence, to test for contra-
positivity symmetry property of medical, and indeed, of any scientific data is a very important
epistemological requirement.

1.3 Upper and Lower Contrapozitivization

Interesting theoretically, and important for applications of fuzzy logics and relations, is the rela-
tionship between non-contrapositive implication (ply) operators and the ply operators that can be
generated from these by the operations of contrapositivization.

Definition [3]: lower and upper contrapositivization.
Given an implication operator —; lacking the property of contrapositive symmetry, we con-
struct from it implication operators that possess it by the following formulas:
(2.1) lower contrapositivization —; : (a =3 b) =(a —; ))A(1-b) —; (1 - a)
(2.2) upper contrapositivization —;» : (a —» b) = (a —; b))V (1 = b) —; (1 —a)

1.3.1 On Early-Zadeh, Kleene-Dienes and Wilmott Implication Operators

Let us define following:
For A and V we take min and maz connectives, respectively; EZ (Early Zadeh ply): ¢ —gz b = (aA
b)V(1—a); KD (Kleene-Dienes): a —xp b = (1—a)vb; W (Willmott): a »w b = (a - gz b)Aka;
crispness kb = bV (1 - b).

The EZ operator, which lacks the contrapositive symmetry itself, can be used to generate
new operators having the property. This can be done by lower or upper contrapositivization of
EZ. Thus we have a theorem that will be needed in Sec.2:

Theorem: Bandler and Kohout [3]:
W and KD operators are the lower and the upper contrapositivization of EZ, respectively.
For theorems concerning other implication operators see e.g. [10].

2 Non-Contrapositive Relational Compositions

2.1 A Brief Summary of BK-Products

The triangle sub-product R <1 S, the triangle super-product R t> S, and square product ROS were
first introduced by Bandler and Kohout in 1977, and are referred to as the BK-products in the
literature. Their theory and applications have made substantial progress since then. See the
survey in [9] with a list of 50 selected references on the mathematical theory and applications of
BK-products in various fields of science and engineering.

Mathematical definitions: Where R is a relation from X to Y, and S a relation from Y
to Z, a product relation R x S is a relation from X to Z, determined by R and §. There are
several types of product used to produce product-relations [5], [9]. Each product type performs a
different logical action on the intermediate sets, as each logical type of the product enforces a
distinct specific meaning on the resulting product-relation R S. We have the following definitions
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of the products. In these definitions, R;;, 5;x represent the fuzzy degrees to which the respective
statements z; Ry;, y;5z are true.

Propuct TYPE SET-BASED DEFINITION MANY-VALUED LoGIC FORMULA
Circle product: z(Ro S)z < zR intersects Sz (Ro S)ix = V;(Rij A Sjx)
Triangle Subproduct: (R4 S)z & zR§ Sz (R S)ir = A\j(Rij ~ Sjx)
Triangle Superproduct: z(R b S)z & zR _5_ Sz (R b S)ix = Aj(Rij — Sjx)
Square product: ¢(ROS)z & RSz (ROS)ir = A;(Rij = Sjx)

Families of fuzzy products of the same logical type that have to be distinguished. The
customary logical symbols for the logic connectives AND, OR, both implications and the equiva-
lence in the above logic formulas represent the connectives of some many-valued logic. When the
relations are fuzzy, there is a wide choice of realization for each of the four product kinds, because
a number of many-valued logic implication operators. The details of choice of the appropriate
many-valued connectives are discussed in [3],[4],[9].

It is important to distinguish harsh fuzzy products (using MIN[a, b] as the outer operator)
from a different family, the family of mean products. Given the general formula (RQ@S); ::=
#(Ri; * Sjk), a mean product is obtained by replacing the outer connective # by }_ and normal-
izing the resulting product appropriately. The mean products have provided an effective inference
mechanism in CLINAID applications [8] and have been shown also to be important in other appli-
cations of relational products [9],[6],[4],[11],(7],[12].

2.2 Theorems on the dependency of the Mean Triangle Prod-
ucts Computed by EZ, KD and W Implication Operators

Those relational compositions that use an implication (ply) operator as their inner operation will
inherit the property or its absence from their respective ply operator. Hence, the epistemological
problems that arise from the lack of this property carry over also to the non-symmetry with respect
to negation of relational compositions. Before we proceed with the proof of the theorem, we briefly
summarize some known facts on triangle products of relations.

2.3 A Theorem on Contrapositive Symmetry of Relational Prod-
ucts

We have seen that the EZ (Early Zadeh) implication operator, which lacks the contrapositive
symmetry itself, can be used to generate new operators having the property. This yields Willmott
implication operator as the lower contrapositivization of EZ, and Kleene-Dienes KD implication
operator as the upper contrapositivization of EZ.

This has a consequence for the interrelationship of the mean triangle products computed by
these three implication operators. Thus we have the following theorem.

Theorem 2.1:
If the negative (positive) in their arguments triangle mean products computed by KD and EZ

are identical, then the positive products (negative) products computed by W and EZ are identical.
In symbols:

(a) If (=§ < =R)kp = (=S <4 ~R)gz holds, then (R™1 4 S~ V) = (R™! <4 §71)gz holds also.
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(b) If (S < R)kp = (5 4 R)gz holds, then (-R™! 4 =85 1)y = (-R~! 4 ~S§~1)gz holds also.

Proof:
Assume that KD and EZ give same negative product. i.e.,

(=S <4 -R)kp = (-5« -R)gz
Then, for all elements of both products it is valid that
(-8 9KD <R)y = (-5 <4FZ -R)y, VieIVke K

By the definition of the product we get

1 1 . .
A E(—'S,‘j —KD k) = N Z(ﬂs.'j . -R;x), Viel VjeJVkeK
f -

7 g

Then,
1

1 .
7, 22085 =P <Rix) = 2= 3 min((=S;; »*P - Rjx), maz(=Si;, ;)
I 7
by the definition of EZ operator.
Since the operator of KD is contrapositive symmetric,
(=8i; %P ~Rjt) = (Rjx »FP 5;5) = (R;} —KP $71)
and (Rg} —=%P $31) < max(8i;,~S;;).  Also,
1 _ - 1 . - _ _ _ - -
Fj Z:(Rkjl - Sjil) = N; me((Rkjl —KD Sjil)7 max(Rkjla —‘Rkjl)amaz(sjila_'sjil))
j j
by the definition of W operator.
Since min((Ry} —%P S, maz(85;1,-~Sh) = (R —%P 531,

1 - -
N. Z(Rkjl -" Sjil)
g
1 . _ - _ -~
7\/'7 me((Rkjl —KD Sjil)’ ma"’(Rkjla “Rk,'l))
j

1 -1 __EZ o-1
:N—jzj:(Rkj - sz' )

by the definition of EZ operator.
So, (R™!aW §-1),, = (R"Y 4BZ2 §-1),,  Viel,Vke K.
Therefore, (R <4 §~1)w = (R™' 94 §~')gz.  This completes the proof.
The proof for the case of the positive products can be argued in a similar way.

We can also ask whether a similar equality holds for KD ply operator, given that the relational

products computed by EZ (a non-contrapositive ply) and W (a contrapositive ply) are equal.

The answer is that the equality is not valid, but it is satisfiable. That means that there exist
relations for which it holds, but one can find other relations for which this does not hold. It is

eagy to prove the following theorem.
Theorem 2.2:

The statement “The negative (positive) triangle mean products computed by EZ and KD are
identical to degree o, if the positive (negative) products computed by EZ and W ply operators are

the same to degree a, respectively” is satisfiable, but not valid universally.
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