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Abstract Fuzzy multimodelling is concerned with the design and utilization of families rather than single models.
The intent is to approximate data that are originated by phenomena whose nature is more relation - based than
function - oriented. In general, fuzzy multimodels comprise a collection of local models M;, M,, ..., M, along with the
relevant mechanisms of triggering and aggregating aimed at assuring a suitable interaction between these models.
The idea of multimodelling is contrasted with some other approaches to fuzzy modelling available in the current
literature. The algorithmic details are laid down and illustrated through several detailed simulation studies.

1. Introductory remarks

Most if not all models encountered in fuzzy modelling [10] are concerned with representing or approxima ting
relationships between input and output variables in the form of some functional dependencies. The visible exception
comes in the form of fuzzy relational models [5, 7, 8]. As the name stipulates, these models are oriented towards
capturing the dependencies between the variables in the form of relations. There are, however, numerous situations
in which function - oriented models or even relation - focused cannot be sufficient enough. The intent of this study is
to come up with a new modelling framework termed fuzzy multimodelling. The objective of fuzzy multimodels is to
deliver an environment assuring a successful interaction between several relational or functional constructs and
allow for their efficient utilization.

In general, the multimodel can be thus regarded as a collection of models M, M, .., M, equipped with some
mechanisms aimed at a relevant of triggering between the models or, if necessary, aggregating the results furnished
by the individual models. It is worth contrasting the proposed approach with those existing in the literature and
point out their main differences. The concept of “local” fuzzy models that is fundamental to the idea outlined in [9]
has nothing to do with the aspect of multimodeling addressed in this study. Even though the architecture of the
multimodel to be studied here relies on a sort of local models, the identification methodology is evidently very
distinct. Moreover the switching mechanism considered in [9] is set up in such a way that only a single result
becomes released by the entire model. In contrast, as this will be clarified in depth, we allow for several models to be
simultaneously invoked and actively pursued. Similarly, the other concept of regression clustering studied in (3]
looks into certain related aspects but does not tackle explicitly the facet of multimodelling on which the entire
discussion in this paper is dwelled upon.

Two examples below give a useful insight into the very essence of the discussed multimodelling problem and
highlight an importance of an operational continuum of modelling that is spread between functions and relations.
Example 1. Consider a series of data sets given in Fig.1(a) - (d). It is evident that in Fig 1(a) the relationships between
x and y constitute evidently a “pure” function - there seem to be very few noisy data points and they could be easily
identified as genuine outliers. In Fig. 1(c) we are faced with more difficult and conceptually intriguing question. One
can still attempt to build a functional form of dependencies between x and y by treating the region W as the one
containing points corrupted by a high level of noise. But is this fully legitimate ? It could well be that in this region
one should rather structure the entire model in terms of a relation rather than a function between x and y. Similarly, in
Fig. 1(b) we are again faced with relations - in fact M, and M, treated together form a relation. Roughly speaking, by
admitting the language of fuzzy relations one captures some structural noise of a nonprobabilistic nature. The data in
Fig.1(d) are definitely represented as a relation (what is shown here is known as a so-called s-curve in chemical
engineering portraying a relation between temperature and a Damk § hler number, d). The data can be split into
three separate segments in the sequel giving rise to three models M,, M,, and M. Again the data in Fig.1(c) exhibit a
quite high variety as we can distinguish between a function (model M; and M,) and one apparent fuzzy relation (M,
). Whether the form of the last model (M,) is functional or relational, it depends on the level of the structural noise
one is willing to accept. If the answer is affirmative then M, can still be regarded as function (not a relation).
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Fig. 1 Example data sets and their corresponding functional and relational models

The next example shows two situations in which the use of fuzzy models becomes even more indispensable.
Example 2. Obstacle avoidance. An autonomous robot is faced with an obstacle and has to avoid it. Not knowing the
details of the navigation algorithm exercised by the robot, our intent is to build a respective model of obstacle
avoidance by monitoring its behavior. To accomplish this we record a distance of the robot from the obstacle and the
corresponding angle of a turn taken at this location, Fig. 2(a). The example log of these data is portrayed in Fig. 2(b).
It is obvious that being rather close to the obstacle the robot takes a sharp turn right or left, see Fig.2 (b). Definitely,
as the data are highly relational, the multimodel facet of modell‘i,nggc b?:omes highly required.
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Fig. 2 Obstacle avoidance problem: (a) robot and obstacle configuration (b) distance - turning angle dependency

All the above problems constitute a genuine conceptual challenge to standard modelling techniques as being inherently
relational. It is not the form of the model to be used that really matters but a way in which they are constructed and
put up together. Imagine, for instance, the use of a single neural network, no matter how complex, in describing the
above problem of obstacle avoidance. This will lead to a perfect averaging of the data (with subsequent highly
undesired effects for the autonomous robot).

Having outlined the main ideas and motivation behind fuzzy multimodels, we move on with the general architecture
of the multimodel and discuss pertinent algorithms.

2. The architecture of the mutlimodel

The main idea is to treat the multimodel as a collection of interacting models with the topology outlined in Fig. 3.
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Fig. 4. General architecture of multimodelling

For completeness of discussion we assume thatx € [0,1]" and one-dimensional output y € {0,1]. The input datum x
is accepted by each model which in turn determine the corresponding output y;, y,, .., y.. Note that we have not
specified any particular form of the model; in fact one should stress that the discussed concept is model - independent.
If necessary, at the later stage of the multimodel development each of the models M;, i=1, 2, ..., c can be particularized
as a fuzzy relational equation, linear or polynomial function, neural network, etc. With each model associated is a
matching module (match) whose role is to express to which extent x should be handled by the i-th model. In other
words the outcome of this matching reflects a degree of confidence to be associated with the result produced by the
corresponding model. For instance, if there is only a single dominant level of matching g linked with the i, -th model,
then this model does count and the result one should rely on is the one provided by it. On the other hand, if two or
more models return similar levels of matching then the results of the corresponding models need to be considered -
in this case the effect of multimodelling becomes evident as the output comes in the form of a collection of several
admissible values, say Yi,r ¥i,- Y, The number of the admitted alternatives (the models taken into account) can be

easily controlled by the predefined level of matching where the pertinent rule of model participation reads as
- consider model M, if g, 2 g*

where g* is a certain threshold (called admission level) and g, denotes the degree of confidence achieved for the i-th
model, g, g*€ [0,1]. .
Noting that even though the selection of g* is not overly critical still some caution should be exercised: too low g*s
can lead to a fairly numerous collection of the output results (as too many models get involved). On the other hand
by moving the value of g* too high the multimodel could easily become incomplete as none of its contributing
models can be regarded relevant for some regions of the input variable(s). The selection of the threshold level

constitutes an usual problem when compromising between specificity and completeness encountered in many other
decision - making situations.

3. Development of fuzzy multimodels

In what follows we describe the construction of the fuzzy multimodel. Before getting into details, it is important to
note that multimodels heavily exploit a concept of “locality” of their individual models. From the operational
standpoint, it is essential to elaborate on how the partition of the space of the input variables can be carried out
efficiently. The main idea is to reveal the structural relationship between the input and output variables via a method
of specialized fuzzy clustering.

3.1. Fuzzy clustering and its directionality aspects

As the data using which the fuzzy multimodel is developed constitute collectively elements (vectors) in an (n+1)
dimensional space, fuzzy clustering can be regarded as a suitable tool aimed at revealing a structure within the given
data set. In contrast with the standard formulations of most of the currently available clustering problems [1, 2, 4},

here we are interested in a direction of the dependencies in the data that is evidently from x to y (but not the other
way around).
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3.1.1. Performance index

As usual in any clustering method, we consider a data set consisting of ordered pairs (x, y,), k=1, 2, .., N. where X
€[0, 1]" and y, €[0, 1]. The formation of the objective function ( clustering criterion) used to describe an extent to
which two pairs of data (x,, y,) and (x, y;) could be regarded as the elements of the same cluster should be guided by
the following commonsense observations,

(1) (x y») and (x, y) treated as two candidates to be included in the same cluster should be similar coordinatewise,
namely the corresponding coordinates of x, and x, as well asy, andy, should be similar,

(ii) the "directionality” component of the performance index should reflect the functional direction needed to be
discovered within the data (meaning that " x implies y"); this fact should be reflected by the character of the
elements assigned to the cluster. In such a sense, with x; almost equal to x, but quite different y, and y,, these two
data should not be placed in the same cluster. On the other hand when x, and x, do not differ very significantly

while having similar y, and y, there is a high likelihood that these patterns could be allocated to the same
cluster.

Let us first explicitly express how to quantify the notion of similarity. Since x, and ¥y are just fuzzy sets
defined in the corresponding finite-dimensional spaces, one can adopt the equality index as originally defined
in [6]. Recall briefly that the membership values "a" and "b" match to the degreea = b equal to

asb=é—[min(a—) b, b -)a)+min(§—-)-l;,§—>'a')]
(1)

where a, b€ [0, 1], while —> denotes a multivalued implication (pseudocomplement, <f. [7]),

a—b={c €[0,1]l atc< b }, and the overbar symbol stands for the complement,

a = 1 - a. Interestingly enough, the equality index equals 1 if and only if the two arguments (membership
values) are the same, a=b. In particular, the implication can be specified in many different ways including
several specific cases such as

Lukasiewicz implication
1,ifasb
a—b= = min(1,1-a+b)
1-a +b, otherwise
. 2
GOdel implication
1,ifa<b
a-)b={
b, otherwise
€))
Gaines
1,ifasb
a—b= = min(1,2)
L, otherwise
a
(6]
a,be [0,1]

The multidimensional version of (1) could be easily derived by averaging the results of the coordinatewise
comparison obtained for the individual coordinates of x, and x, This yields

Xk = X1 =-ann' (xuaxu)
im]

&)

The necessary directionality aspect of the objective function is captured in the form
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(Yk = yx) - (x; = x.)
(6

As the clusters should be formed on a basis of both (i) and (ii), we aggregate (1) and (6) ina multiplicative way
that gives rise to the formula,

@ e x)+ (vem )] [fxemx) = (em )

@
that from now on will be used as the clustering objective function.

3.12. The clustering algorithm

The clustering procedure guided by the objective function (7) is applied successively to the individual elements
of the data set. The process is carried out bottom-up in an aglomerative fashion: we start with N clusters each
consisting of a single pair of the input-output patterns and merge them successively based on the values of the
objective function produced via this combination. Starting from "N" single-element clusters {x,, y;)} {(x2 o)}, .-,
{0, YN)), the new two-element cluster

{(xio, Yio): (X 0 Yi0)}

is formed in such a way it achieves a maximum of Q determined over all possible mergings of the available data
points. Subsequently, the clusters to be expanded (merged) at the successive stages are guided by the maximal

value of the performance index Q averaged over the corresponding cluster. This leads to the general merging
rule:

- merge clusters X and X' for which the sum

l___ ¥ 3> Qx)
card(X) card(¥') o, 1 'e % (e X'

@

attains a maximal value among all possible merging options.

The fundamental question that usually occurs when using any clustering technique is the one about a
“plausible” number of the clusters to be distinguished in the data set. Since the proposed method is of an
agglomerative nature, one should be able to control the process of merging by terminating it when the produced
clusters cannot sufficiently represent the data. The deficient representation phenomenon may occur due to an
excessive variety of the objects placed within the same cluster. This in turn calls for a formal definition of the
representation capabilities of the clusters. More precisely, we will be interested in expressing how well the
prototypes represent the elements of the generated clusters. Let us introduce the following notion. A prototype

P=(P. Py €10,1]"X[0, 1]

of cluster X is taken as one of its elements
(:10’ Yio)

such that it maximizes the objective function (7) where the computations concern all the elements belonging to
this cluster

card(¥) card(X)
Pr=xigandpy=yq if max ¥ Qi )= ¥ Qk i)
il T3

k=l

®
(note that the indices in Q are used to emphasize the data being discussed).
The resulting value of Q say Q(X), is used as a measure of the representation capabilities of the prototype taken
with respect to X. For the single-element clusters, card(X) = 1, the elements of the clusters are obviously ideal
prototypes and the above expression always equals 1. In sequel, the global sum of Q taken over all the clusters

"o

<,
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Vo= Y Q¥

all closters

(10)
could be admitted as an indicator of representativeness of the data conveyed by their clusters (more precisely,
their prototypes). For ¢ =N one has V(c) =N. Generally speaking, V(c) is a non-decreasing function of the
number of clusters, namely V(c;) $V(c,) for ¢;>c¢;. The analysis of the behaviour of V(c) being plotted versus
¢ could be used to detect the most "plausible” number of clusters: the minimal value of ¢, say, ¢, that does not
lead to a substantial and abrupt decrease in V can be accepted as a viable candidate for the structure in this set of
patterns. Similarly, as envisioned in the case of cluster validity indices [1], V(c) should be viewed as a measure
indicating a range (rather than a single specific number) of plausible clusters worth considering in the data set.

3. 2. Construction of local model induced by clusters

The data grouped in the i-th cluster are approximated in the obvious way by the corresponding local model

y =M{x,a))
an
i=1, 2, ..., ¢ where a, denotes a collection (vector) of the parameters of the model. As the hierarchical clustering is
two-valued (the clusters are sets rather than fuzzy sets of data points), the identification of the corresponding local
model embraces all these data points belonging to this particular cluster. As mentioned, the form of the model is not
restricted in any way so finally the multimodel can include a variety of linear and nonlinear models, fuzzy relational

equations, neural networks, fuzzy neural networks, etc. This means that in general the mapping capabilities of the
multimodel can be made as high as required.

When using the multimodel, each local model becomes invoked with a certain confidence m, depending on a position

of x with respect to the prototype of this model p,; The pertinent calculations of the confidence level are realized by
the matching module associated with this local model. More specifically,

n
Hi = f Y (xe=pu)
k=1

12)
where py; = [p14 Pag - P and x =[x X5 ... X ).

4. Numerical experiments

The following examples including several collections of synthetic data serve as an illustration of the proposed
method. In all these experiments, the objective function exploits the implication and equality index based on the
implication given by (4). This choice is somewhat arbitrary; any other realization of the implication operator could
lead to slightly different numerical results. For illustrative reasons the examples are two-dimensional.

Example 1. The data analyzed here, Fig.5, are distributed very regularly forming a simple geometrical construction.
By eyballing the plot of the obtained objective function, Fig. 6, we can admit c=4 a equal to the minimal number of
the clusters identified in the considered data set.
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Fig. 5. Two - dimensional data set
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The prototypes of the clusters assume the values

while the obtained partition of the data is illustrated in Fig.7(a).
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Fig. 7. Partition of ata (a) and fuzzy multimodel with the threshold level 0.8(b)

The models (M, My, M,;, M,) are constructed locally within each cluster (all the models are linear except the one for
M, described as y = 1.204 x- 2.668 x* + 1.9 x). The obtained models are outlined in Fig.1(b).

Example 2. We look more carefully at the s - curve characteristic for bifurcation diagrams illustrating relationship
between temperature (T) and the Damk § hler number (D), refer also to Fig. 1(d). These diagrams exhibit a multiplicity
of steady states. We study a finite collection of data as shown in Fig. 8.
The directionality component plays a vital role in the revealing the relationships between the variables, Without it the
clustering method was not capable of identifying any useful relationship even for a relatively high number of the
clusters forced upon the data set. Below summarized are the partitions obtained when clustering the data without the
use of the directionality component and with its inclusion.
Partition of data - no directionality component:
5 clusters:

{2 1

{6 5 4 3}

{12 11 8 7 9 10}

22 21 20 19 18 14 13 17 16 15}

{26 25 24 23}
4 clusters:

{6 5 43 2 1}

{12 11 8 7 9 10}

22 21 20 19 18 14 13 17 16 15}

{26 25 24 23}
3 clusters:
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{6 54321
{1211 8 7 9 10}
{26 25 24 23 22 21 20 19 18 14 13 17 16 15}

Partition of data - directionality component included ( 3 clusters)
{10 9 8 7 6 5 4 3 2 1}
{14 13 12 11 17 16 15}
{26 25 24 23 22 21 20 19 18}

As expected the linear models were capable of reconstructing the data, Fig. 9
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Fig. 9 Fuzzy multimodel composed of three models

5. Conclusions

The concept of fuzzy muitimodelling opens up a new avenue of system modelling with fuzzy sets. Within this
framework we treat the multiplicity of possible output values of the multimodel not as a deficiency of the modelling
technique but rather as its genuine advantage. The multimodel places the idea of randomness in a novel context of
structural varieties that are operationally captured in terms of fuzzy relations. While this study has primarily
focussed on the fundamentals of fuzzy multimodelling, some essential design issues are still left open:

- firstly, the choice of the admission threshold g* has to be investigated in depth along with some parametric
adjustments (parameters a and b) of the objective function. This could eventually involve some scenarios of limited
supervision involving samples of data with some indications about the admitted level of the structural variability.
Similarly, more detailed guidelines should be established with respect to the number of the clusters (models) contributing

to the multimodel.
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-secondly, one can exploit various types of local models and experimentally quantify their computational features as
well as pay a particular attention to generalization capabilities achieved by the entire multimodel.
These aspects will be pursued in future studies.
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