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Abstract: This paper studied the fuzzy property on H-Space, Bring forward the con-
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point thoorem, Browder's fixed point theorem and some recent important results.
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0 INTRODUCTION

In 1988, C. Bardaro and R. Ceppitelli [1] bring forward the concept of H-Space and
studied fixed point theorems. In 1994, Chang Shisheng and Xiang Shuwen [3] bring for-
ward the concept of locally H-convex spaces and studied fixed point theorems, This paper
studied the fuzzy property on H-Space, Bring forward the concept of fuzzy mappings and
concept of fixed point of fuzzy mappings on H-Space, The results presented in this papér
unify and extend schauder s fixed point theorem . Browder s fixed point the’orem and some

recent important results.
1 PRELIMINARIES

DEFINITION 1. 1 An H-Space is a pair (X, {P,}), where X is a topological space
and {I'\} is a given family of nonempty contractible subsets of X, indexed by the finite
subsets of X, such that ACB implies ', CI.

DEFINITION 1.2 Let (X, {I',}) be an H-Space, A subset DCX is called H-Convex
relative to subset CCX if, for every finite subset AC.C, it follows I',CD. When C=D,
then D is called H-convex briefly.

DEFINITION 1.3 An H-Space (X, {I',}) is called locally H-convex space, if for ev-

ery e2>0 and every open neighboruhood U of x, there exists a open neighboruhood V of x
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such that U is H-convex relative to V.

DEFINIFION 1. 4 Let (X, d) be a metric space, A nonempty subset DCX is called
uniformly locally H-Convex subset, if for every ¢2>0 there exists 8>>0 such that for each x
€D, B, (x) is H-Convex relative to B, (x), where B, (x) = {y€X,d (x, y) <r).

REMARK 1. 6§ 1t is easy to prove that locally convex topological vector spaces is lo-
cally H-Convex spaces, normed spaces is uniformly locally H-Convex spaces.

DEFINITION 1. 6 Let X is a topological space, D is a nonempty subset of X, A
mapping B: D— [0, 1] is called a fuzzy subset over D, we denote by F (D) the family of
all fuzzy subsets over D.

DEFINITION 1. 7 A mapping T from D—F (D) is called fuzzy mapping Over D, for
each x€D, T (x) =T,EF (D), i. e., T, is a fuzzy set over D.

DEFINITION 1. 8 Let T: D—F (D), T is said to be a fuzzy function iff there exists
only one z, €D such that T, (z,) =TgT, W) >0.

DEFINITION 1. 9 A fuzzy function T ;: D—>F (D) is said to be a very fuzzy function,
iff T, (z,) >0and V us#z,, T, (u) =0. _

DEFINITION 1. 10 If T: D—F (D) is a fuzzy function, then by using T we can de-
fine T: 'D—>F (D) as follows;

T (u) = {T';z') /’:;: , VKED
It is obvious that T : 'D—F (D) is a very fuzzy function.
DEFINITION 1. 11 Let T: D—F (D), AEF (D), Then the image of A by T is the
fuzzy set T [A] €F (D) defined by:
T{Al@) = up{T.(y) - 4G)) Vy€D
The inverse—image of A by T is the fuzzy set T™' [A] €F (D) defined by:
T[41G@=) = wup{l,(y) - AG)) Vz€D
If A is the usual subset of D, then A (x) is the characteristic function of A.

DEFINITION 1. 12 The fuzzy mapping T is F-continuous iff for any x €D and for
any open set C in X we have: T,=C[]D implies that 3 V,€V (x) with T [V,] <cND
where V (x) denotes the set of all neighbourhoods of x in X.

DEFINITION 1. 13 Let T: D—F (D), x,€D, i.fT,. (xg) =I:1étg(T,° (u), Then x,
is called a fixed point of T.

LEMMA 1. 14 ([2], [6]) Let (X, {I',)) is an H-Space, x;5 X3 ***s X, is points
of X (not necessarily distinct): Then for a standard (n—1) —Simplex e, e, ¢, there
exists a continuous mapping f: e; e,*** e,—>X such that

£ ey e) C 1"(,;‘x ez, )
Where {i;, i, **ix} is any nonempty subset of {1, 2, -, n).
LEMMA 1. 15 ([3]) Let (X, d) is a matric space, (X, {[',})is a locally H-Convex
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space, D is a compact subset of X, Then D is a uniformly locally H-Convex subset of X
proof. V >0 for each x €D, since (X, {I'x)) is a locally H-Convex space, therefore there
exists §,€ (0, &) such that By (x) is H-Convex relative to By (x),i. e. V a finite subset
ACB; (x), it follows FACB: (0.

Since D is a compact subset of X, and DC lEID Bf;l (x), hence there exists a finite sub-
n
set {x15 **, x.} CD such that DCUBX (x).
[Egd}

L)
Choose d=min {?x', i=1, 2, «, n}, for each xED V a finite subset ACB, (x), °.*

x€D, S Fi€ {1, 2, -, n} wish thathBa¥ (x)) ACB, (x) QBE} (x) CBE;L

(B (x) SB,, (), . TACBy () CBy (Ba.;i (x)) CB, (x), this completes the proof.
2 MAIN RESULTS

THEOREM 2. 1 Let (X, d) is a matric space, (X, {I',}) is a locally H-Convex
space, D is nonempty compact subset of X and D is H-Convex, Let T: D>F (D) is a fuzzy
function, if T': D—>F (D) is F-Continuous, Then there exists x,ED, x, is a fixed point
of T.

Proof. since T : D—F (D) is a fuzzy function, therefore ¥ x €D there exists only one
7z €D with T, (z,) =maxT, (1) >0, by difinition 1. 10, T; (z) >0, T; () =0V »
#z;- Y x€D let f (x) =z, we shall show that f: DD is continuous, ¥ x¢ED, if open
set CCX such that f (x¢) =z, €C, then C (z,) =1, by difinition 1. 9, 1. 10, T,
(z,) >0, T,, (W) =0V p#z,, hence T, () <C () V pE€D, i. e. T, SC, Since T':
D—F (D) is F-Continuous, therefore there exists a neighbourhood V,, of x, such that T’
[V.] SDNC, I xEV, , by 0<T, (z,) Ssup {TL z)  Vy, @) =T [V,] @) <
C (), wehave C (z,) =1,i. e. f (x) =z €C, which implies that if open set C such
that £ (x¢) €C then there exists V,, such thatf (x) €CY xEV,,, therefore f: D—>D is

continuous at x¢, since f: D->D is continuous at each point of D, hence f: D—D is contin-

uous.

D is H-Convex and compact subset of X, by lemma 1. 15, D is uniformly locally H-
Convex, hence ¥ ¢>0, 3 n€ (0, &) such that B, (x) is H-Convex relative to B, (x), by
f: D—D is continuous, there extists a neighbourhood B, (x) of x such that £ B, (x)) C
B, (f (x)), D is compact and chlejnm' (x), hence we have {x;5 ***, x,} CD such that

DC'UlBa.‘l (x)) for {B;,‘I (xp) |i=1, 2, -, n) there extists a continuous partition of unity
{B &x) li=1, 2, +,n}: D—>[0, 1], Let Aa—1= {e;> ¢,} is a standard (n—1) —simplex,

we can define

g:D "’A.-—u y(z) = zﬂi(:‘)euv z €D,

i=1
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easy to doduce that g: D—>/\,_, is continuous, moreaver by lemma 1. 14 there exists con-
tinuous mapping h: A,_;—D such that
hey = e,) C T yvmsite, »
where {i;, -+, ix} is a nonempty subset of {1, 2, =, n}.
Since mapping goh: A,_;—>A.,_; and continuous, by Brouwer s fixed point theorem
there exists e€ /A\,—; such that goh (e) =e, Let h (¢) =x,, then x,ED and x,=h (¢) =
hogoh (e) =hog (x,), i. e. x, is a fixed point of hog, let I (x) = {i€ {1, 2, +-,

n} | (x) >0} V xE€ED, hence hog (x) =h (;;B. (x) e) =h (mz(;) B (x) &) CT e
moreover, i€ I (x) with B (x) >0, i. e. xGBQll (x))» by difinition of B, (x) easy to deduce
that £ (By (x)) CB, (f (xJ), .\ £ (x) €f (B, (x)) CB, (f (x)), Vi€I (x) then
f (x;) €B, (f (x)), moreover B, (f (x)) is H-Convex relative to B, (f (x)), hence we
have h (g (X)) €Tl g4, enTB. (f (x)) then ¥V ¢>03 x,ED such that x,=h (g (x,)) €
B, (f ()), Let ty=i (a=1, 2, =) 3 %, €B, (f (&), bv & d (xe» £ (1)) <to» by
D is compacty, there exists {x,} C {x.) such that limx, =x, €D, moreoven f: D—>D is
continuous , limf () =f (xod5 d (xos £ (x0)) <d (x5 Xo) +d (xqs £ (xa)) +d
(f (xq)s £ (x0))), When j>co d (xg5 £ (x0)) <O, . d (x5 £ (X)) =0, i. €. xo=f
(xo)» by difinition of £, xo=f (x¢) =z, i. e. Ty, (xo) =T,, (z,) =maxT,, (), Then
Xo is a fixed point of T.

COROLLARY 2. 1. 1  ([3] Let (X, d) is a metric space, (X, {T'x}) is a locally H-

Convex space, D is nonempty compact subset of X and D is H-Convex, Let £f: D—~D is
continuous, Then there exists xED, x, is a fixed point of f.

Proof. we can define fuzzy function T ; D—=F (D) as follows:

1 y=1@)
Yz&€D T, (w)={1 s Yu€ED
\Z wF#f&@)

by T we have.
1 p=f (x)
VXEDT, (n) ={
0 p7#f (x)
duce that T': D—F (D) is F-Continuous, by theorem 2. 1 there exists xo €D such that T,,
(x¢) =max Ty, W) e Ty (xo) =1, 5 xo=f (x¢).
wE€D

» YV €D since £f: DD is continuous, it is easy to de-

THEOREM 2. 2 Let X is a normed linear space, D is a compact convex subset of X,
T: D—F (D) is a fuzzy function, and T': D—F (D) is F-Continuous , Then there exists Xo
€D, x, is a fixed point of T.

Proof. for any finite subset {x;, Xp, -, x,} X, We can define Fy=Cy {X;5 Xz, *=,
Xa}» Then (X, {F,)}) is a locally H-Convex space, D is locally H-Convex and compactly,
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by theorem 2. 1 there exists xo€ D such that T,, (xo) =x:16a;cT,, (u)5 xo is a fixed point
of T.
COROLLARY 2. 2. 1 (Schauder) Let X is a normed linear space, D is a compact
convex subset of X, f: D—=D is continuous, Then there exits xo€ D, such that f (x,) =x,.
Proof. define fuzzy function T: D—>F (D) as follows:

I w=5@
Vz€D T,(u)={() y Yw€D
2 kFf(z)
, 1 p=f (x) ' .
Then V x€ED T, (u) ={ » Y nED it is easy to deduce that T': D—=F (D) is
0 n##f x)

F-Continuous, hence conclusion follows from theorem 2. 2.

COROLLARY 2. 2. 2 ( [4]) Let X=R", D is a compact convex subset of X, T :
D—F (D) is a fuzzy fouction, and T': D—=F (D) is F-Continuous, Then there exits x €
D such that T, (xo) =TgT,' ).

Proof. conclusion follows from theorem 2. 2.

COROLLORY 2. 2. 3 (Brouwer) Let X=R", D is a compact convex subset of X,
f: D—D is continuous, Then there exists x,€D, x, is a fixed point of f.

Proof. The same that proof of corollary 2. 2. 1, define fuzzy function T : D—F (D)
and T': D—F (D), conclusion follows from corollory 2. 2. 2. '

THEOREM 2. 3 Let (X, {I'\}) is an H-Space, D is a nonempty compact subset of
X, and H-Convex, T : D—F (D) is fuzzy mapping such that: (1) there exists a real func-
tion a (x): D> (0, 1] such that ¥ xED (Tx)enZ®5 (T,)yynis H-Convex, ¥ yED there
exists a open set 0,CT.! (y) = {x€ED|y€ (T, ) and U 0,=D, Then there exists x

€D such that T, (xo) 2o (x¢), (2) In particular, if & (x) =mgg(T, (u): D— (0, 1]
B

satisfies condition (1), Then there exists x,€D, x4 is a fixed point of T.

Proof. We can define set-valued mapping T,: D—>2° as follows: ¥ x€D, T, (x) =
(Tws> ¥V XED, T, (x) #®and T. (x) is H-Convex. Since D is compact subset and D
=yléTDO,, where 0,CT;! (y), therefore there exists a finite set {y;, =5 y,} CD such that

n
DCIU10,|, and there exists a continuous partition of unity {g, (x) |i=1, 2, -, n}: D>

[0, 1], Let Ap_y= {e, e,)} is a standard (n—1) —simplex, we can define mapping g :

D—>Aa-; as follows: g (x) = EB, (x) ei, Y x€D, Then g: D—>A,_, and continuous,
f=1

by lemma 1. 14, there exists continuous mapping h; Ao1—T 5, o1y )CD such that h (e, s

=5 ¢.) CT (yi -y, ) CD, where {egs =+ e, ) is a subset of {e;, *+, ¢,}, Since mapping

goh: A.;—>A., is continuous, therefore there exist fixet point e such that go h (e) =

e, Let xo=h (e), then "’ hog (xg) =hogo h (¢) =h (¢) =x4, . xo is a fixed point of

hog, On the other land, Since hog (x,) =h (EB. (xo) ey) €T yue1ay)» Where I (xo) =
I=1
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(i€ {1, 2, =, n}, B (x¢) >0}, therefore Y i€I (xo) from B, (xo) >0 we can obtain
X€0,CT.' (v, i. e y €T, (xo) V i€ (x¢), moreover T, (xo) = (Tyda, is H-
Convex, hence we have [y ic109) CTa (X¢)s then xg=hog (x¢) €Ta. (x¢), i e Ty
(x9) =Za (x¢)s, In particular, when a (x) =1§12;cT, (r) such that condition (1), T,

(x¢) 20 (x¢) =maxT, (), then xo is a fixed point of T. this completes the proof.
vED

COROLLARY 2.3.1 Let (X, {I'\}) is an H-Space, D is a nonempty compact subset
of X, and H-Convex, T : D—>2° is a set-valued mapping, If Y x€D T (x) is nonempty
and H-Convex, moreover ¥ y €D there exists a open set O,ET~! (y), and l'léll_’O,=D,
Then there exists x, €D such that x€T (x,).

Proof. We can define mapping T: D—=F (D) as follows: ¥V x€D T, () =

1 p€T (x)
{0 rET (x)
3 directly.

COROLLARY 2.3.2 ([3])Let (X,{I4}) is an H-Space, D is a nonempty compact
H-Convex subset of X, T;: D-»2° is set-valued mapping such that Y x€D, T (x) is
nonempty and H-Convex, T ™! (x) is open, Then there exists x, €D such that x¢ €T (x¢).

COROLLARY 2. 3. 3 (Browder) Let X is a Hausdorff topological vector space, D
CX is nonempty compact and convex, T ; D->2P is a set-valued mapping such that Y x €’

YV u€D, a (x) =1; D> (0, 1] the conclusion follows from theorem 2.

X, T (x) is nonempty convex and T~ (x) is open, Then there exists x, €D such that x,
is fixed point of T. ‘

Proof. for any finite sub A= {x;, -, x,} (X, We can define I'y=Co {x;, *-,
Xo}s then (X, {T',}) is an H-Space, it is easy to deduce that satisfies conditions of corol-
lary 2. 3. 2, therefore the conclusion follows from Corollary 2. 3. 2 directly.

REMARK 2. 3. 4 Corellary 2. 1. 1 is the theorem 1 of [3], Corellary 2. 2. 1is
the schauder s fixed poient theorem, corellary 2. 2. 2 is the theorem 2. 11 of [4], corellary
2. 2. 3is the Brouwer fixed point theorem, they are all the special cases of theorem 2. 1,
corellary 2. 3. 2 is the thorem 3 of (3], corellory 2. 3. 3 is the Browder s fixed point theo-

Tem, they are all the special cases of theorem 2. 3.
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