FIXED POINT THEOREM FOR FUZZY MAPPINGS IN H-SPACE

Shi Chuan

Department of Applied Mathematics,
Nanjing University of Science & Technology,
Nanjing, 210014, People's Republic of China

Abstract: This paper studied the fuzzy property on H-Space, Bring forward the concept of fuzzy mappings and concept of fixed point of fuzzy mappings on H-Space, and studied fixed point theorems, The results presented unify and extend schauder's fixed point theorem. Browder's fixed point theorem and some recent important results.

Keywords: H-Space, Fuzzy mapping, Fixed point theorem, Schauder's fixed point theorem, Browder's fixed point theorem.

0 INTRODUCTION

In 1988, C. Bardaro and R. Ceppitelli [1] bring forward the concept of H-Space and studied fixed point theorems. In 1994, Chang Shisheng and Xiang Shuwen [3] bring forward the concept of locally H-convex spaces and studied fixed point theorems, This paper studied the fuzzy property on H-Space, Bring forward the concept of fuzzy mappings and concept of fixed point of fuzzy mappings on H-Space, The results presented in this paper unify and extend schauder's fixed point theorem. Browder's fixed point theorem and some recent important results.

1 PRELIMINARIES

DEFINITION 1. 1 An H-Space is a pair $(X, \{P_A\})$, where X is a topological space and $\{\Gamma_A\}$ is a given family of nonempty contractible subsets of X, indexed by the finite subsets of X, such that $A \subseteq B$ implies $\Gamma_A \subseteq \Gamma_B$.

DEFINITION 1. 2 Let $(X, \{\Gamma_A\})$ be an H-Space, A subset $D \subset X$ is called H-Convex relative to subset $C \subset X$ if, for every finite subset $A \subset C$, it follows $\Gamma_A \subset D$. When C = D, then D is called H-convex briefly.

DEFINITION 1.3 An H-Space $(X, \{\Gamma_A\})$ is called locally H-convex space, if for every $\epsilon > 0$ and every open neighboruhood U of x, there exists a open neighboruhood V of x

such that U is H-convex relative to V.

DEFINITION 1. 4 Let (X, d) be a metric space, A nonempty subset $D \subset X$ is called uniformly locally H-Convex subset, if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for each $x \in D$, $B_{\varepsilon}(x)$ is H-Convex relative to $B_{\delta}(x)$, where $B_{r}(x) = \{y \in X, d(x, y) < r\}$.

REMARK 1. 5 It is easy to prove that locally convex topological vector spaces is locally H-Convex spaces, normed spaces is uniformly locally H-Convex spaces.

DEFINITION 1. 6 Let X is a topological space, D is a nonempty subset of X, A mapping B: $D \rightarrow [0, 1]$ is called a fuzzy subset over D, we denote by F (D) the family of all fuzzy subsets over D.

DEFINITION 1. 7 A mapping T from $D \rightarrow F(D)$ is called fuzzy mapping Over D, for each $x \in D$, $T(x) = T_x \in F(D)$, i. e., T_x is a fuzzy set over D.

DEFINITION 1. 8 Let T: D \rightarrow F (D), T is said to be a fuzzy function iff there exists only one $z_x \in D$ such that $T_x(z_x) = \max_{\mu \in D} T_x(\mu) > 0$.

DEFINITION 1. 9 A fuzzy function T: D \rightarrow F (D) is said to be a very fuzzy function, iff T_x (z_x) >0 and $\forall u \neq z_x$, T_x (μ) =0.

DEFINITION 1. 10 If T: D \rightarrow F (D) is a fuzzy function, then by using T we can define T: 'D \rightarrow F (D) as follows:

$$T'_{z}(\mu) = \begin{cases} T_{z}(z_{z}) & \mu = z_{z} \\ 0 & \mu \neq z_{z} \end{cases}, \quad \forall \ \mu \in D$$

It is obvious that $T: D \rightarrow F$ (D) is a very fuzzy function.

DEFINITION 1. 11 Let T: D \rightarrow F (D), A \in F (D), Then the image of A by T is the fuzzy set T [A] \in F (D) defined by:

$$T[A](y) = \sup_{z \in D} \{T_z(y) \cdot A(x)\} \quad \forall \ y \in D$$

The inverse—image of A by T is the fuzzy set $T^{-1}[A] \in F(D)$ defined by:

$$T^{-1}[A](x) = \sup_{y \in D} \left\langle T_x(y) \cdot A(y) \right\rangle \quad \forall \ x \in D$$

If A is the usual subset of D, then A (x) is the characteristic function of A.

DEFINITION 1. 12 The fuzzy mapping T is F-continuous iff for any $x \in D$ and for any open set C in X we have: $T_x \subseteq C \cap D$ implies that $\exists V_x \in V$ (x) with $T[V_x] \subseteq C \cap D$ where V (x) denotes the set of all neighbourhoods of x in X.

DEFINITION 1. 13 Let T: D \rightarrow F (D), $x_0 \in D$, if T_{x_0} (x_0) = $\max_{\mu \in D} T_{x_0}$ (μ), Then x_0 is called a fixed point of T.

LEMMA 1. 14 ([2], [5]) Let $(X, \{\Gamma_A\})$ is an H-Space, x_1, x_2, \dots, x_n is points of X (not necessarily distinct): Then for a standard (n-1) —Simplex e_1 e_2 e_n there exists a continuous mapping $f: e_1$ e_2 e_n \to X such that

$$f(e_{i_1},\cdots,e_{i_k})\subset \Gamma(x_{i_1},\cdots,x_{i_k})$$

Where $\{i_1, i_2, \cdots i_k\}$ is any nonempty subset of $\{1, 2, \cdots, n\}$.

LEMMA 1. 15 ([3]) Let (X, d) is a matric space, $(X, \{\Gamma_A\})$ is a locally H-Convex

space, D is a compact subset of X, Then D is a uniformly locally H-Convex subset of X proof. $\forall \ \epsilon > 0$ for each $x \in D$, since $(X, \{\Gamma_A\})$ is a locally H-Convex space, therefore there exists $\delta_x \in (0, \epsilon)$ such that $B_{\frac{\epsilon}{2}}(x)$ is H-Convex relative to $B_{\delta_x}(x)$, i. e. \forall a finite subset $A \subseteq B_{\delta_x}(x)$, it follows $\Gamma_A \subseteq B_{\frac{\epsilon}{2}}(x)$.

Since D is a compact subset of X, and $D \subset U_{x \in D} = B^{\frac{\delta_{x_i}}{2}}(x)$, hence there exists a finite subset $\{x_1, \dots, x_n\} \subset D$ such that $D \subset U_{i-1}^n B^{\frac{\delta_{x_i}}{2}}(x_i)$.

Choose $\delta = \min \left\{ \frac{\delta_{x_i}}{2}, i = 1, 2, \dots, n \right\}$, for each $x \in D \ \forall$ a finite subset $A \subseteq B_{\delta}(x)$, $x \in D$, $\therefore \exists i \in \{1, 2, \dots, n\}$ wish that $x \in B_{\delta^{\frac{x_i}{2}}}(x_i)$) $\therefore A \subseteq B_{\delta}(x) \subseteq B_{\frac{\delta x_i}{2}}(x) \subseteq B_{\frac{\delta x_i}{2}}(x)$ ($B_{\delta^{\frac{\delta x_i}{2}}}(x_i)$) $\subseteq B_{\delta_{x_i}}(x_i)$, $\therefore \Gamma_A \subseteq B_{\frac{\epsilon}{2}}(x_i) \subseteq B_{\frac{\epsilon}{2}}(x)$) $\subseteq B_{\epsilon}(x)$, this completes the proof.

2 MAIN RESULTS

THEOREM 2. 1 Let (X, d) is a matric space, $(X, \{\Gamma_A\})$ is a locally H-Convex space, D is nonempty compact subset of X and D is H-Convex, Let $T: D \rightarrow F(D)$ is a fuzzy function, if $T': D \rightarrow F(D)$ is F-Continuous, Then there exists $x_0 \in D$, x_0 is a fixed point of T.

Proof. since $T: D \to F$ (D) is a fuzzy function, therefore $\forall x \in D$ there exists only one $z_x \in D$ with T_x (z_x) = $\max_{\mu \in D} T_x$ (μ) >0, by difinition 1. 10, T_x' (z_x) >0, T_x' (μ) =0 $\forall \mu \neq z_x$. $\forall x \in D$ let $f(x) = z_x$, we shall show that $f: D \to D$ is continuous, $\forall x_0 \in D$, if open set $C \subset X$ such that $f(x_0) = z_{x_0} \in C$, then $C(z_0) = 1$, by difinition 1. 9, 1. 10, T_{x_0}' (z_{x_0}) >0, T_{x_0}' (z_{x_0}) >0, T_{x_0}' (z_{x_0}) >0, therefore there exists a neighbourhood z_{x_0} of z_{x_0} such that z_{x_0}' $z_{$

D is H-Convex and compact subset of X, by lemma 1. 15, D is uniformly locally H-Convex, hence $\forall \ \epsilon > 0$, $\exists \ \eta \in (0, \ \epsilon)$ such that $B_{\epsilon}(x)$ is H-Convex relative to $B_{\eta}(x)$, by $f: D \rightarrow D$ is continuous, there extists a neighbourhood $B_{\delta_{\lambda}}(x)$ of x such that $f(B_{\delta_{\lambda}}(x)) \subset B_{\eta}(f(x))$, D is compact and $C \subset U B_{\delta_{\lambda}}(x)$, hence we have $\{x_1, \dots, x_n\} \subset D$ such that $D \subset U B_{\delta_{\lambda_1}}(x_i)$, for $\{B_{\delta_{\lambda_1}}(x_i) \mid i=1, 2, \dots, n\}$ there extists a continuous partition of unity $\{\beta_i(x) \mid i=1, 2, \dots, n\}: D \rightarrow [0, 1]$, Let $\triangle_{n-1} = \{e_1 \cdots e_n\}$ is a standard (n-1)—simplex, we can define

$$g: D \rightarrow \triangle_{a-1}, g(x) = \sum_{i=1}^{a} \beta_i(x)e_i, \forall x \in D,$$

easy to doduce that $g: D \rightarrow \triangle_{n-1}$ is continuous, moreover by lemma 1.14 there exists continuous mapping $h: \triangle_{n-1} \rightarrow D$ such that

$$h\left(e_{i_1}\cdots e_{i_k}\right) \subset \Gamma_{(f(e_{i_k}),\cdots,f((e_{i_k}))}$$

where $\{i_1, \dots, i_k\}$ is a nonempty subset of $\{1, 2, \dots, n\}$.

Since mapping goh: $\triangle_{n-1} \rightarrow \triangle_{n-1}$ and continuous, by Brouwer's fixed point theorem there exists $e \in \triangle_{n-1}$ such that goh (e) =e, Let h (e) =x_e, then x_e \in D and x_e=h (e) = hogoh (e) =hog (x_a), i. e. x_e is a fixed point of hog, let I (x) = {i ∈ {1, 2, ..., n}} | β_i (x) >0} \forall x \in D, hence hog (x) =h ($\sum_{i=1}^{n} β_i$ (x) e_i) =h ($\sum_{i\in I(x)} β_i$ (x) e_i) \subset $\Gamma_{(i(x_i),i\in I(x))}$ moreover, $i\in I$ (x) with $β_i$ (x) >0, i. e. $x\in B_{\delta_{x_i}}$ (x_i), by difinition of B_{δ_x} (x) easy to deduce that f (B_{δ_{x_i}} (x_i)) \subset B_n (f (x_i)), \therefore f (x) \in f (B_{δ_{x_i}} (x_i)) \subset B_n (f (x_i)), \forall i \in I (x) then f (x_i) \in B_n (f (x)), moreover B_e (f (x)) is H-Convex relative to B_n (f (x)), hence we have h (g (x)) \in $\Gamma_{\{f(x_i),i\in I\}}\subset$ B_e (f (x)) then \forall ϵ >0 \exists x_e \in D such that x_e=h (g (x_e)) \in B_e (f (x_e)), Let $\epsilon_n = \frac{1}{n}$ (n=1, 2, ...) \exists x_n \in B_e (f (x_n)), i. e. d (x_n, f (x_n)) < ϵ_n , by D is compacty, there exists {x_n</sub>} \subset {x_n} such that $\lim_{i\to\infty}$ x_n=x₀ \in D, moreoven f: D \Rightarrow D is continuous, $\lim_{i\to\infty}$ (x_i) =f (x₀), d (x₀, f (x₀)) \leq d (x₀, x_n) +d (x_n, f (x_n)) +d (f (x_n), f (x₀))), when $j\to\infty$ d (x₀, f (x₀)) \leq 0, \therefore d (x₀, f (x₀)) =0, i. e. x₀=f (x₀), by difinition of f, x₀=f (x₀) =z_{x₀}, i. e. T_{x₀} (x₀) =T_{x₀} (z_{x₀}) =max T_{x₀} (u), Then x₀ is a fixed point of T.

COROLLARY 2. 1. 1 ([3]) Let (X, d) is a metric space, $(X, \{\Gamma_A\})$ is a locally H-Convex space, D is nonempty compact subset of X and D is H-Convex, Let $f: D \rightarrow D$ is continuous, Then there exists $x_0 \in D$, x_0 is a fixed point of f.

Proof. we can define fuzzy function $T: D \rightarrow F$ (D) as follows:

$$\forall x \in D \quad T_x(\mu) = \begin{cases} 1 & \mu = f(x) \\ \frac{1}{2} & \mu \neq f(x) \end{cases}, \quad \forall \ \mu \in D$$

by T we have:

 $\forall \ x \in D \ T_x'(\mu) = \begin{cases} 1 & \mu = f(x) \\ 0 & \mu \neq f(x) \end{cases}, \forall \ \mu \in D \ \text{since } f \colon D \rightarrow D \ \text{is continuous, it is easy to deduce that } T' \colon D \rightarrow F(D) \ \text{is } F - \text{Continuous, by theorem } 2 \cdot 1 \ \text{there exists } x_0 \in D \ \text{such that } T_{x_0}$ $(x_0) = \max_{\mu \in D} T_{x_0}(\mu), \text{ i. e. } T_{x_0}(x_0) = 1, \text{ i. } x_0 = f(x_0).$

THEOREM 2. 2 Let X is a normed linear space, D is a compact convex subset of X, T: $D \rightarrow F$ (D) is a fuzzy function, and T': $D \rightarrow F$ (D) is F-Continuous, Then there exists $x_0 \in D$, x_0 is a fixed point of T.

Proof. for any finite subset $\{x_1, x_2, \dots, x_n\} \subset X$, We can define $\Gamma_A = C_0 \{x_1, x_2, \dots, x_n\}$, Then $(X, \{\Gamma_A\})$ is a locally H-Convex space, D is locally H-Convex and compactly,

by theorem 2. 1 there exists $x_0 \in D$ such that $T_{x_0}(x_0) = \max_{\mu \in D} T_{x_0}(\mu)$, x_0 is a fixed point of T.

COROLLARY 2. 2. 1 (Schauder) Let X is a normed linear space, D is a compact convex subset of X, f: $D \rightarrow D$ is continuous, Then there exits $x_0 \in D$, such that $f(x_0) = x_0$.

Proof. define fuzzy function $T: D \rightarrow F$ (D) as follows:

$$\forall x \in D \quad T_x(\mu) = \begin{cases} 1 & \mu = f(x) \\ \frac{1}{2} & \mu \neq f(x) \end{cases}, \quad \forall \mu \in D$$

$$(1 \quad \mu = f(x))$$

Then $\forall x \in D$ $T'_{x}(\mu) = \begin{cases} 1 & \mu = f(x) \\ 0 & \mu \neq f(x) \end{cases}$, $\forall \mu \in D$ it is easy to deduce that $T': D \rightarrow F(D)$ is F-Continuous, hence conclusion follows from theorem 2. 2.

COROLLARY 2. 2. 2 ([4]) Let $X=R^n$, D is a compact convex subset of X, T: D \rightarrow F (D) is a fuzzy fouction, and T': D \rightarrow F (D) is F-Continuous, Then there exits $x_0 \in$ D such that T_{x_0} (x_0) = $\max_{\mu \in D} T_{x_0}$ (μ).

Proof. conclusion follows from theorem 2. 2.

COROLLORY 2. 2. 3 (Brouwer) Let $X=R^n$, D is a compact convex subset of X, $f: D \rightarrow D$ is continuous, Then there exists $x_0 \in D$, x_0 is a fixed point of f.

Proof. The same that proof of corollary 2. 2. 1, define fuzzy function $T: D \rightarrow F$ (D) and $T': D \rightarrow F$ (D), conclusion follows from corollary 2. 2. 2.

THEOREM 2. 3 Let $(X, \{\Gamma_A\})$ is an H-Space, D is a nonempty compact subset of X, and H-Convex, T: D \rightarrow F (D) is fuzzy mapping such that: (1) there exists a real function $\alpha(x)$: D \rightarrow (0, 1] such that $\forall x \in D$ $(T_x)_{\alpha(x)} \neq \Phi$, $(T_x)_{\alpha(x)}$ is H-Convex, $\forall y \in D$ there exists a open set $O_y \subset T_\alpha^{-1}(y) = \{x \in D | y \in (T_x)_{\alpha(x)}\}$ and $\bigcup_{y \in D} O_y = D$, Then there exists $x_0 \in D$ such that $T_{x_0}(x_0) \geqslant \alpha(x_0)$, (2) In particular, if $\alpha(x) = \max_{y \in D} T_x(y) \in D$ satisfies condition (1), Then there exists $x_0 \in D$, x_0 is a fixed point of T.

Proof. We can define set-valued mapping $T_a: D \to 2^D$ as follows: $\forall x \in D$, $T_a(x) = (T_x)_{a(x)}$, $\forall x \in D$, $T_a(x) \neq \Phi$ and $T_a(x)$ is H-Convex. Since D is compact subset and D = $\bigcup_{y \in D} O_y$, where $O_y \subset T_a^{-1}(y)$, therefore there exists a finite set $\{y_1, \dots, y_n\} \subset D$ such that $D \subset \bigcup_{i=1}^n O_{y_i}$, and there exists a continuous partition of unity $\{\beta_i(x) \mid i=1, 2, \dots, n\}$; $D \to [0, 1]$, Let $\triangle_{n-1} = \{e_1 \cdots e_n\}$ is a standard (n-1)—simplex, we can define mapping $g: D \to \triangle_{n-1}$ as follows: $g(x) = \sum_{i=1}^n \beta_i(x) = (x) \in A$. Then $g: D \to \triangle_{n-1}$ and continuous, by lemma 1.14, there exists continuous mapping $h: A \to C$.

by lemma 1.14, there exists continuous mapping $h: \triangle_{n-1} \to \Gamma_{(y_1, \dots, y_n)} \subset D$ such that $h(e_{i_1}, \dots, e_{i_k}) \subset \Gamma(y_{i_1} \cdots y_{i_k}) \subset D$, where $\{e_{i_1}, \dots, e_{i_k}\}$ is a subset of $\{e_1, \dots, e_n\}$, Since mapping go $h: \triangle_{n-1} \to \triangle_{n-1}$ is continuous, therefore there exist fixet point e such that go h(e) = e, Let $x_0 = h(e)$, then \therefore hog $(x_0) = h$ ogo $h(e) = h(e) = x_0$, \therefore x_0 is a fixed point of

hog, On the other land, Since hog $(x_0) = h \left(\sum_{i=1}^n \beta_i (x_0) e_i \right) \in \Gamma_{(y_i, i \in I(x_0))}$, where $I(x_0) = h$

 $\{i \in \{1, 2, \cdots, n\}, \beta_i \ (x_0) > 0\}, \text{ therefore } \forall i \in I \ (x_0) \text{ from } \beta_i \ (x_0) > 0 \text{ we can obtain } x_0 \in O_{y_i} \subset T_\alpha^{-1} \ (y_i), i. e. \ y_i \in T_\alpha \ (x_0) \ \forall i \in I \ (x_0), \text{ moreover } T_\alpha \ (x_0) = (T_{x_0})_{\alpha(x_0)} \text{ is } H-Convex, hence we have } \Gamma_{(y_i,i \in I(x_0))} \subset T_\alpha \ (x_0), \text{ then } x_0 = \log \ (x_0) \in T_\alpha \ (x_0), \text{ i. e. } T_{x_0} \ (x_0) \geqslant \alpha \ (x_0), \text{ In particular, when } \overline{\alpha} \ (x) = \max_{\mu \in D} T_x \ (\mu) \text{ such that condition } (1), T_{x_0} \ (x_0) \geqslant \overline{\alpha} \ (x_0) = \max_{\mu \in D} T_{x_0} \ (\mu), \text{ then } x_0 \text{ is a fixed point of } T. \text{ this completes the proof.}$

COROLLARY 2. 3. 1 Let $(X, \{\Gamma_A\})$ is an H-Space, D is a nonempty compact subset of X, and H-Convex, $T: D \rightarrow 2^D$ is a set-valued mapping, If $\forall x \in D$ T (x) is nonempty and H-Convex, moreover $\forall y \in D$ there exists a open set $O_y \in T^{-1}$ (y), and $\bigcup_{y \in D} O_y = D$, Then there exists $x_0 \in D$ such that $x_0 \in T$ (x_0) .

Proof. We can define mapping $\hat{T}: D \to F$ (D) as follows: $\forall x \in D \ \hat{T}_x$ (μ) = $\begin{cases} 1 & \mu \in T \ (x) \\ 0 & \mu \notin T \ (x) \end{cases} \forall \mu \in D, \ \alpha \ (x) = 1: D \to (0, 1] \text{ the conclusion follows from theorem 2.}$ 3 directly.

COROLLARY 2. 3. 2 ([3]) Let $(X, \{\Gamma_A\})$ is an H-Space, D is a nonempty compact H-Convex subset of X, T: $D \rightarrow 2^D$ is set-valued mapping such that $\forall x \in D$, T (x) is nonempty and H-Convex, $T^{-1}(x)$ is open, Then there exists $x_0 \in D$ such that $x_0 \in T(x_0)$.

COROLLARY 2. 3. 3 (Browder) Let X is a Hausdorff topological vector space, D $\subset X$ is nonempty compact and convex, T: D \rightarrow 2^D is a set-valued mapping such that $\forall x \in X$, T (x) is nonempty convex and T⁻¹ (x) is open, Then there exists $x_0 \in D$ such that x_0 is fixed point of T.

Proof. for any finite sub $A = \{x_1, \dots, x_n\} \subset X$, We can define $\Gamma_A = \text{Co}\{x_1, \dots, x_n\}$, then $(X, \{\Gamma_A\})$ is an H-Space, it is easy to deduce that satisfies conditions of corollary 2. 3. 2, therefore the conclusion follows from Corollary 2. 3. 2 directly.

REMARK 2. 3. 4 Corellary 2. 1. 1 is the theorem 1 of [3], Corellary 2. 2. 1 is the schauder's fixed poient theorem, corellary 2. 2. 2 is the theorem 2. 11 of [4], corellary 2. 2. 3 is the Brouwer fixed point theorem, they are all the special cases of theorem 2. 1, corellary 2. 3. 2 is the thorem 3 of [3], corellary 2. 3. 3 is the Browder's fixed point theorem, they are all the special cases of theorem 2. 3.

REFERENCES

- [1] C. Bardaro & R. Ceppitelli, J. Math. Anal. Appl, 132 (1988), 484-490.
- [2] Shih-Sen Chang & Yi-hai Ma, J. Mth. Anal. Appl., 163, No. 2 (1992), 406-421.
- [3] Shih-Sen Chang & Shuwen Xiang, Journal of mathematical research and exposition, Vol. 14 No. 4 (1994), 561-564.
- [4] D. Butnariu, Fuzzy sets and systems 7 (1982) 191-207.
- [5] C. Horvath, in Nonlinear and convex Analysis, Lecture Notes in pure and Appl. Math series, 107 (1987).