The Countable Additivity of Set-ValuedIntegrals and F-Valued Integrals

Zheng Chongguang

The Second Aviation Institute of the chinese People's Libration Army

Abstract: In this paper, integrals of Set-Valued functions and F-Valued functions are further investigated. At first, we show the countable additivity of Set-Valued integrals under two kinds of senses, then we extended these results to the circumstance of F-Valued integrals.

key words: additions, set-valued integral, F-Valued integral, countable additivity.

1. Introduction

Let (X, \mathscr{A}, μ) be a complate finite measure space, R^n be the n-dim Euclidean space. Let \mathscr{P}_0 (R^n) , co K be the family of all nonempty subsets, nonempty compact convex subsets of R^n respectively. The countable addition on \mathscr{P}_0 (R^n) is defined as follow:

$$\sum_{n=1}^{\infty} B_n = \{ \sum_{n=1}^{\infty} b_n : b_n \in B_n (n \ge 1), \sum_{n=1}^{\infty} \| b_n \| < \infty \}$$

for $B_n \in \mathscr{P}_0$ (Rⁿ) (n \geqslant 1), where $||b_n||$ is the Euclidean norm.

By using Kuratowski convergence, another addition can be defined as

$$\sum_{n=1}^{\infty} B_n = \lim_{k \to \infty} \sum_{n=1}^{k} B_n$$

where $\{B_n\} \subset \mathscr{P}_0$ (R^n) .

Let $\mathscr{F}(R^n)$ be the family of all fuzzy subsets on R^n , an element $\tilde{a} \in \mathscr{F}(R^n)$ is said to be a fuzzy number iff $\{r \in R^n : a(r) \ge \lambda\} \in co(K)$, for every $\lambda \in (0, 1]$, we use \mathscr{F}^* to denote the set of all fuzzy numbers and further define the addition on \mathscr{F}^* as:

$$(\sum_{n=1}^{\infty} \tilde{r}_n)(u) = \sup \{\bigwedge_{n=1}^{\infty} \tilde{r}_n(u_n): u = \sum_{n=1}^{\infty} u_n, \sum_{n=1}^{\infty} ||u_n|| < \infty \}$$

where $\{\tilde{r}_n\}$ $\subset \mathscr{F}^*$, let \tilde{r}_1 , $\tilde{r}_2 \in \mathscr{F}^*$, we define

$$d(\tilde{r}_1, \tilde{r}_2) = \sup \{d(r_{1\lambda}, r_{2\lambda}): \lambda \in (0, 1]\}$$

where d (*, *) is the Hausdarff metric on \mathcal{P}_0 (R"). Under the metric convergence for

 $\{r_n\}$ $\subset \mathcal{F}^*$, we define another addition

$$\sum_{n=1}^{\infty} \tilde{r}_n = \lim_{n \to \infty} \sum_{k=1}^{n} \tilde{r}_K$$

A set-valued function $F: X \rightarrow \mathscr{P}_0$ (Rⁿ) is measurable if its graph is measurable, i. e.

$$G,F = \{(x,y) : x \in X, y \in F(x)\} \in \mathscr{A} * \mathscr{B}(\mathbb{R}^n).$$

A F-set-valued function is measurable if its λ -cut set-valued function $F_{\lambda}(x)$ is measurable for all $\lambda \in (0, 1]$, where $F_{\lambda}(x) = (\tilde{F}(x))_{\lambda}$ is the λ -cut set-valued function. The integral of $F: X \to \mathscr{D}_0(\mathbb{R}^n)$ on a set $A \in \mathscr{A}$ is defined as:

$$\int_{A} F d\mu = \left\{ \int_{A} f d\mu_{1} f \in S(F) \right\}$$

where $S(F) = \{f: f \text{ is an integrable selection of } F\}$.

The integral of \tilde{F} : $X \rightarrow F$ (Rⁿ) on $A \in \mathscr{A}$ is defined as:

$$(\int_{A} \widetilde{F} d\mu)(u) = \sup\{\lambda \in (0,1] : u \in \int_{A} F_{\lambda} d\mu\}$$

The purpose of the paper is to prove that the integral of set-valued function has the property of countable additivity and further to show the extended corresponding result on F-valued integral.

2. On set-valued integrals

Theorem 1. Let $F_i: X \to \mathscr{P}_0$ (R^n) $(i \ge 1)$ be a sequence of measurable set-valued functions. Let $\psi_i: X \to [0, \infty)$ $(i \ge 1)$ be a sequence of measurable functions and assume that

i)
$$\|F_i(x)\| \leqslant \psi_i(x)$$
 for all $x \in X$,

ii)
$$\psi(x) = \sum_{i=1}^{\infty} \psi_i(x)$$
 is integrable;

Then

i) Set-valued function F:
$$X \rightarrow \mathscr{P}_0$$
 (Rⁿ), F (x) = $\sum_{i=1}^{\infty} F_i$ (x) is integrable bounded;

ii)
$$S(F) = \sum_{i=1}^{\infty} S(F_i)$$

iii)
$$\int_{x} F d\mu = \sum_{i=1}^{\infty} \int_{x} F_{i} d\mu$$

Proof: It is clear that $\| F(x) \| \le \sum_{i=1}^{\infty} \| F_i(x) \| \le \sum_{i=1}^{\infty} \Psi_i(x) = \psi(x)$ then i) is proved.

Obverously. S (F) $\supset \sum_{i=1}^{\infty} S$ (F_i), hence to prove ii) it is sufficiently to verify that

$$S(F) \subset \sum_{i=1}^{\infty} S(F_i).$$

For this aim, let $f \in S$ (F), we need to find a sequence $f_i \colon X \to R^n$ ($i \ge 1$) such that

 $f_i \in S$ (F_i) , $f(x) = \sum_{i=1}^{\infty} f_i(x)$. Now, we define a set-valued function

$$x \to G(x) = \{(u_1, u_2, \dots) : u_i \in F_i(x) (i \ge 1)\} \in I(R^*) \text{ (the Banach space of sequence } i$$

$$\{u_i\} \subset R^n \text{ and the norm } \| \{u_i\} \| = \sum_{i=1}^{\infty} \| u_i \| < \infty \}$$

By the measurability of F_i (i $\geqslant 1$), it is easily that G is a measurable set-valued function (the definition of measurability is the same for a metric space). Next, let us define a continuous mapping to the following

$$H_{i}I(\mathbb{R}^{n}) \rightarrow X, H(\{u_{i}\}) = \sum_{i=1}^{n} u_{i}$$

consequently, the mapping

$$x \to H^{-1}(f(x)) = KerH + (f(x)/2^i)$$

is a measurable set-valued function from X to I(R^n), since the intersection of two measurable set-valued function is also measurable and $f \in S$ (F), then the set-valued function G (•) $\bigcap H^{-1}$ (•) is nonempty measurable, therefore there exists an a . e. measurable selection

$$x \rightarrow \{f_i(x)\}, f_i(x) \in F_i(x), s, t, f(x) = \sum_{i=1}^{\infty} F_i(x)$$
 a. $e, x \in X$

consequently. (ii) is proved.

(iii) is a direct result of (ii) (Q. E. D.)

Corollary 1. Let F_1 , F_2 be integrably bounded set-valued function, then for a. $b \in \mathbb{R}$

$$\int_{X} (aF_1 + bF_2) d\mu = a \cdot \int_{X} F_1 d\mu + b \int_{X} F_2 d\mu$$

Theorem 2. Let F_i : $X \to \mathscr{D}_0$ (Rⁿ) (i $\geqslant 1$) be a sequence of measurable set-valued functions, by the same conditions assumed as theorem 1. Then

$$\int_{X} \left(\sum_{i=1}^{\infty} F_{i}\right) d\mu = \sum_{i=1}^{\infty} \int_{X} F_{i} d\mu.$$

The proof can be easily obtained by using Corollary 1 and the dominated convergence theorem.

3. On F-valued integrals

Lemma 1. Let $\{a_n\}$ $\subset \mathscr{F}^*$ be a sequence of F-numbers, $\sum_{i=1}^{\infty} a_i \in \mathscr{F}^*$, then

$$(\sum_{n=1}^{\infty} \tilde{a}_n)_{\lambda} = \sum_{n=1}^{\infty} a_{n\lambda}, \quad \lambda \in (0,1]$$

Lemma 2. Let \widetilde{F}_n $(n \ge 1)$ be a sequence of measurable F-valued functions, $\psi_n \colon X \to [0, \infty)$ $(n \ge 1)$ be a sequence of measurable functions, further assume that

(i)
$$\sup_{\lambda \in (0,1]} ||F_{n\lambda}(x)|| \leq \psi_n(x), (x \in X)$$

(ii)
$$\psi(x) = \sum_{i=1}^{\infty} \psi_n(x)$$
 is integrable.

The mapping $\tilde{F}: X \to \mathscr{F}^*$, $x \to \sum_{i=1}^{\infty} \tilde{F}_n$ (x) is an integrably bounded F-valued function;

Proof: It is easy to see that \tilde{F} is a F-valued function for $\lambda \in (0, 1]$, by Lemma 1 we have

$$F_{\lambda}(x) = \sum_{n=1}^{\infty} F_{n\lambda}(x),$$

then

$$sup_{\lambda \in (0,1]} ||F_{\lambda}(x)|| \leq \sum_{n=1}^{\infty} sup_{\lambda \in (0,1]} ||F_{n\lambda}||$$
$$\leq \sum_{n=1}^{\infty} \psi_n(x) = \psi(x).$$

(Q. E. D)

For $a \in \mathbb{R}$, $\tilde{b} \in \mathscr{F}^*$, define $a \cdot \tilde{b}$ as $(a \cdot \tilde{b})_{\lambda} = a \cdot b_{\lambda}$ ($\lambda \in (0, 1]$)

Corollary 2. Let \tilde{F}_1 , \tilde{F}_2 : $X \rightarrow \mathbb{R}^n$ be integrably bounded F-valued functions, a, $b \in \mathbb{R}$, then

$$\int_{X} (a \cdot \tilde{F}_{1} + b\tilde{F}_{2}) d\mu = a \cdot \int_{X} \tilde{F}_{1} d\mu + b \cdot \int_{X} \tilde{F}_{2} d\mu$$

Theorem 4. Let \tilde{F}_n (n \geqslant 1) and \tilde{F} be measurable F-valued functions, $\tilde{F} = \sum_{n=1}^{\infty} \tilde{F}_n$. Further assume that the conditions (i) and (ii) in Theorem 3 are satisfied, then

$$\int_{X} \left(\sum_{i=1}^{\infty} \widetilde{F}_{n} \right) d\mu = \sum_{i=1}^{\infty} \int_{X} \widetilde{F}_{n} d\mu.$$

References

- 1. J. Aumann, Integral of set-valued functions, J. Math. Anal. Appl, No. 12, 1965. 1-12.
 - 2. Z. Artstein, Set-valued measures. Tran. Amer. Math. Soc. 1972. (165), 103-125.
 - 3. E. Klein & C. Thompson, Theory of Correspondences, New York, 1984
 - 4. Zhang wenxiu, Set-valued measures and random sets Xian Jiaotong Uni. press, 1989
- 5. M. Puri &D Ralescu, Fuzzy Random Vaviables. J. Math. Aual. Appl 1986 (114). 409-442.