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1 Introduction

At present great attention concentrated on fuzzy logic in the industrial world. Fuzzy
control is one of the most popular application areasof fuzzy logic. Since this time
more than 2000 industrial application consist fuzzy control.

Since the beginning of the 90th the articles of the fuzzy literature only dealt the
linguistic rule based, heuristic fuzzy controllers. That time began the examination
of the explicit formulas of fuzzy controllers. We can answer questions — like which
type of transfer functions can be realized with fuzzy controllers, or how appropriate
can be the given function approximated with fuzzy controllers -/ by examining the
explicit output formulas.

In the early 90th more author had proved that the fuzzy controllers are universal
approzimators. Kosko had showed that an additive fuzzy system uniformly approx-
imates a given f:x — y if X is compact and f is continuous [6]. At the same time
Wang has proved that for any f real continuous function on a compact set exists
a fuzzy control function that approximate f with arbitrary accuracy. Nguyen and
Kreinovich generalized Wang’s theorem for any t- and s-norm and arbitrary aver-
aging type defuzzification operator. The common characteristic feature of the last
three theorems is the very dense rule base and unbounded support. In the practical
applications both the rule base and the support are bounded.

Since this time the fuzzy literature investigated almost the one-input fuzzy con-
trollers. In this article we take our interest in two-input controllers.

2 One input formulae and approximation

Our first question is what crisp formula is the equivalent of a given fuzzy controller.
El Hajjaji and Rachid [3] have given a partial answer to this question for a special
one-input fuzzy control system. In their model both antecedents and consequents
are identical, isosceles triangular. They examined a Mamdani [8] controller with a.
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Center of Area defuzzification method, and obtained the following explicit formula
for the output of the controller:

(2 —1)°— (1 —1)* B
2d, — d? + d; % 2 (1)

v = (i+ )b+

where b is the common base for the antecedents and consequent, and (dy, dz) is the
fuzzified version of observation z*.

In their paper Kéczy and Sugeno [4] have derived the formula for the same con-
troller however using Center of Gravity defuzzification, instead of the COA method:

e o1y (1P —(d—1)* b
y =t bt S T a2, —@ <2 2)

the notations are the same as used in (1).

They showed, that the maximal deviation between (1) and (2) is 2% of the com-
mon base length. In [4] explicit output formulae for the same rule based Larsen-style
controller [7] have been given as well, both for the COA and COG defuzzification
method. The output formula for the Larsen-style controller with COG defuzzifica-
tion is more interesting than the previous results:

‘ o1 b
y = (i+5)b+(1-2di) x 5, (3)

as (3) is a linear function of z* (as d, is linear itself).

The analogue maximum deviation value for these Larsen-style controllers is 6 %
of the common base length. The two defuzzification methods do not deliver very
much different conclusions, so they restrict investigations to the use of the COG
defuzzification technique in the next.

The Mamdani-controller general trapezoidal antecedents and consequents has
the following structure:

Cg+.'178

*=C o — -
V=0t Gt o e 1 O

(4)

The output formula is given in [4] for the general Takagi-Sugeno controller [11]
as well. The structure of the controller’s output function is

Cq
¢s + cgx*

y* = c1z” + cz* +e3 + (5)
(5) has a different behaviour from the Mamdani- or Larsen-controllers as it has a
parabolic member.

The Sugeno-controller is a fuzzy controller with crisp singleton consequents. This
controller is a special case of both the Mamdani-controller and the Takagi-Sugeno
controller. It has been shown, that by using adaptive controllers of this type, it
is possible to construct stable fuzzy controllers for non-linear systems [5]. Also it
has been shown that the Sugeno-controller is suitable for the generation of arbitrary

continuous functions [1)].
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In [4] an exact output function is calculated, but here we give only the structural

form :
C2

—_— 6
C3.’II* +c4 ( )
If the antecedents are equidistant isosceles triangulars, then (6) is identical with (3).
So The isosceles triangular Larsen-controller with COG defuzzification is identical
in its behaviour with the Sugeno-controller.

In the next sections we will calculate the analogue formulae for two-input con-
trollers.

y'=ca+

3 Two input formulae with a single rule

In this section we examine a special fuzzy controller that has only one rule. The
method we use here will easily be generalized to multi-rule controllers.

Suppose a two input ( z} , z3 ) fuzzy controller has only one (R;) rule, and (R;)
has the following format:

If Xl 18 A11 and Xg 18 Azz, thenY s Qll . (7)

We have to restrict the shapes of both the antecedents and the consequents. In
industrial fuzzy controllers the shape of all terms in the rules is trapezoidal, so in
this paper we always suppose this shape. It is reasonable to choose the consequent
shapes so that they have a single core point, however, in other applications, in
linguistic fuzzy reasoning, also trapezoidal consequents might be meaningful.

We will only consider the COG method of defuzzification, because there is not
too much deviation between the COG and COA methods, as shown in [4], and
calculation by COG method is simpler. We used Maple for some of our calculations.

The trapezoidal A;; consequent has four characteristic points (the min of support,
the min of the core, the max. of the core, the max. of the support), a;;, b;j, c;; and
di]', where ai; S bi]’ S Cij S dij.

The observation (3, x3) gives the degrees of matching pa,, (z1) = D; and
YA, (z2) = D, for the antecedents A;; and Aj;. From these we can calculate the
output of the Mamdani-controller with applying the COG defuzzification.

We concentrate on the non-trivial subregion

(a11 L 21 < by, an <9 < bay) (8)

Outside of the (8) D; or D, are 0. In the regions (b1 < 21 < ¢11 o1 by < 22 < c21)
D, or D, is 1. We chose one of the remaining four subregions, examining the other
three regions, we gave analogue output functions.

The membership degrees D; and D, can be expressed:

a11 — T1 a1 — T2

D, = and Dy =

ayr — bn az1 — bn
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3.1 The min aggregating operator

From application points of view there can be two T-norm used in (7) to aggregate
the D; and D, degrees of matching of the inputs z] and x3, the min function and the
Algebraic T-norm. The remaining T-norms have bigger computational complexity.

Applying the min function as a T-norm, for our two dimensional input space,
the rectangular region can be devided into two parts on one part min{D;, D;} = D,
and in the other min{D;, D3} = D;. The points where membership degrees dy; ,
d;; are equal, can be expressed by

(a11 — z1) (@21 — b)) = (a21 — 22) (@11 — bu1) . 9)

(9) describes a straight line, that is the diagonal of the (8) rectangular region.
For the observations (z3, z3) where

(331 - an) (a21 - 621)

(011 - bu)

(z%, x%) is ’below the line Dy < Dy and Dy; = minDy, D; = D;. For the other
points ’above the line’;, Dy; = Dy; = min Dy, Dy = D,.

The aggregated D;; degree of matching allows us to calculate the output function
of the Mamdani-controller.

The four characteristic point of the (J1; consequent are p,q,r,s , where p < ¢ <
r < s. The center of this trapezoid is

zy < + ag ,

(q=p)’=(s=r plp+2r—q)—s(s+2q—1)
3(g—p+s—r) 3(g—p+s—r)

ytrap -

(10)

PPs—ptg+r)—2ps(r+q)+s*(p—stq+r)
(-35+3r—3¢+3p)(2s+D(r—s+p—q)—2p)
where Dy, is the degree of matching, for this antecedent. Let us substitute

the value of min{D,, D;} into (10), then we give the explicit output value of the
controller, for the points ’below’ the line:

4
=c 2 + cp 4 ———. 11
ytra,p 1 1 2 + cs T1 + cs ( )
We gave the same structure for the points 'above’ the line with different c,, con-
stants. We used this notation with constants c,, in order to make the structure clean,
otherwise these constants are functions of the rule base and antecedent parameters

cm = f(a11,021,b11,b21,p,9,7,8)

The first two terms of (11) are linear the last term is hyperbolic. We could give no
exact approximation for this non-linear term in general cases.
Using triangular consequents the center is simpler than (10):

_ptg+ts Di(2q—s—p) 2q-—s—p
ytna—' 3 + 3 + 3D1—6 . (12)
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However the output formula has the same structure as (10), for the points 'below

the line’:
(s+p—2¢) 2  —3aug+bus+bug+bup

3apn —3bn 3ayn —3bny

(@11 —bu)(s +p—2q)
3ay —6bi1 +3z4
If the consequent shape is symmetrical, 11 — p11 = $11 — 11 for trapezoidal case

or g1 — P11 = $11 — qu for triangular case, then the output formulas would be crisp
constants.

+ (13)

Yiria =

3.2 The algebraic t-norm aggregating operator

In the previous section we can give output formula for the subsets of the region
of interest. If the algebraic t-norm is the aggregating operator, then there exists
an explicit output formula for the whole observed range. The aggregated degree of
matching can be expressed:

(au - 331) (d21 - -732)
(011 - bn) (d21 - 621) '

Substituting (24) to the center formula we gave the following structure for both
the triangular- and the trapezoidal consequents:

Du((l)l, (22) = (14)

Cs
Ytrap = C1 T3 + Co T2 + c5 2122 + ¢4 + . (15
mer 4 C6Ty+CrTs+csT1To+ ¢y )

(15) has a bit complicated behaviour, than (11) or (13).

4 Two input formulae with four rules

In the previous section a simplified control model is discussed. We extend our
investigation to general multi-rule control systems. The rules have the following
format:

If X, is Aj;and X, is Ag; thenYis Q,; . (16)

Suppose that A;q, Az, A1 and A, give positive and nontrivial degrees of match-
ing for x* = (X}, %), then the following four rules fire: Ryj, Ri2, Rz and Rg;. We
assumed that 0 < D;; < 1so

cn<ap<z < du < 512

holds for z; and
c21 < agy < zp <dyy < by
for z,.

From here the Dj; aggregated degree of matching can be calculated. For example
D3, is the following:

a1z — dy — 22

D;I = HAp, (w2) A Py (x2) = D13 A Dy =

a1z — b1z dn —ca’
where A is one of the t-norms, the min or the algebraic t-norm.
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4.1 min as a t-norm

First we have to determine the regions, where an exact output formula can be
given. The sections, where the (z1,z2) observations give equal membership degree
for the two antecedents of a given rule can be calculated analogue with the one-rule
controller.

E.g. for the A;; and A,; antecedents of the rule R;; this section is

(alia a2j)a (bli’ b2j) .

There exist similar sections for all the four rules. One end point of these sections
is the corner of the region of interest. As we know from the basic geometry n general
line dived the space into "—(”2—"'11 + 1 parts. In our case these four lines divide the
observed region into maximum 11 subparts. In these subparts there exists an explicit
crisp output formula of the fuzzy controller, with analogue the one-rule controller.

The COG defuzzfied output formula of the two-input fuzzy-controllers are the
following:

. Tij=1.2A(D}, Qi) - y(Dj, Qi)
Yirap i i=1.2 A(DY;, Qi;) ’
where y is the scaled or a-cut center of the Q;; consequent, depends on the inference
method. The other function, A is the scaled or a-cut area of Q;;.

(17)

4.1.1 Mamdani-controller

For Mamdani-controllers y has already derived in section 3.1, the area of trapezoidal
consequents is the following:

* 2

Avrap( D, Qi) = (Pij — ij + Tij — 8ij) —é’— + (i — pij) Dj; - (18)

Applying (18) and (10) the COG defuzzyfied output of a Mamdani-controller for
trapezoidal consequents has the following structure:

3 3 2 2
y = c1xy + c2Zy + 3Ty + 4Ty + €521 + CT2 + Oy (19)

2 2
csxi + coxy + €101 + €11 X2 + €12

(19) is an explicit crisp output formula for two-input Mamdani-controllers. The
¢, constants are differ from one sub-region to other, and they are not so simple.
The output formula is the result of a polinom division. The denominator of (19) is
a two-value parabolic polinom, the numerator is a two-value third degree polinom
with different ¢,, coefficients, so in general there is no chance to simplify it. The
coeflicients are a functions of the rule parameters.

cm = f(@kt, bkis Chiy Akt Pils Gkl Tkly Skl )k=1..2,I=1..2

If the consequents have triangular shape, then the output has the same structure
as (19).
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4.1.2 Larsen- and Sugeno-controller

In the 3.1-th section we do not discuss the Larsen- and Sugeno-controllers, because
for one-rule systems their output formula is a crisp constant.

For Larsen- and Sugeno-controller the §(D};, Qi;) does not depend on the degree
of matching only on the shape of the Q;;:

(D, Qi) = §(Qi3) (20)
and A(ij, Qi;) is linear function of Dj;, so (17) can be written by:
y = 2ij=1.2 (ij . Wij) Y
Yijc1.2 D5 Wi

The W;; constant is the weight of the Q;; consequent, and the Y;; crisp value is
the center of Q;;. The only difference between the Larsen- and the Sugeno-controller
is the value of W;;s. For Sugeno-controller

(21)

Wi =1. (22)
The explicit output formula of these controllers has the structure:

. C1T1+ C2T2+ Cs
;1 + csxa + ¢

(23)

In figure 1 the whole input region of a general four-rule Mamdani-fuzzy control

system with COG defuzzification can be seen. The antecedents and consequents are
in table 4.1.2:

Ay trapezoidal, with characteristic points (0.5, 2, 4, 6.7)
Ay, trapezoidal, with characteristic points (4.1, 7, 8, 8.5)
Ag  trapezoidal, with characteristic points (0.5, 2, 3, 5)
Agy trapezoidal, with characteristic points (3.2, 5, 7, 8)

qu triangular, with characteristic points (1, 2, 5)

¢z triangular, with characteristic points (6, 12, 13)

g1 triangular, with characteristic points (3, 3.5, 6)

g2» triangular, with characteristic points (2.5, 11, 11.5)

Table 1: The Antecedents and consequents of a controller

4.2 Algebraic t-norm

There is no need to divide the input region into subregions, if an algebraic t-norm
is the aggregating operator, but the output formulas are complicated. In this case
the Dj; aggregated degree of matching can be expressed by:

Dy (1, T3) = ((;1111:1:;3 Ejzi : :221)) . (24)
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Figure 1: OQutput of a Mamdani-controller.

For Mamdani-controller the output formula can be derived by substituting (24)
into (17), the result has the following structure:

Ei:O..3,_’i=0..3 Ciij5 ztl 17'; (25)
2 i=0..2,j=0.2 €2ij T )

For Larsen- and Sugeno-controller the output formula is much simpler:

«_ C1T1F+C2T2+CsT1T21 ¢
csT1 + T2+ €7 T1 23 + Cs

The output of the Larsen-controller using algebraic t-norm aggregating operator,
COG defuzzification is in figure 2. The parameters can be seen in table 4.1.2.

Aldlgeaxai t - morIma

Figure 2: Output of a Larsen-controller.

5 Conclusion

In the previous sections we have shown, that it is possible to give the exact crisp
output formulae for two input fuzzy controllers. We had showed that fuzzy con-
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trollers are not fuzzy systems in the sense that they can be substituted by crisp
functions. This was

We pointed at differences between the aggregating operators min and the alge-
braic t-norm. By using the min we have to divide the firing region into parts, and
can give explicit crisp output formulae for these regions.

With the algebraic t-norm, no division is , but the output formulae are not as
simple as the output functions of the min. The output formulae are polynomial
fraction, and in general cannot give a linear term.

The methods we used can be generalized to determine the output crisp function
of an n-input fuzzy controllers.
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