Extensions of Boolean functions to T-tribes of fuzzy sets 1

Erich Peter Klement, Radko Mesiar, Mirko Navara ²

Department of Mathematics, Johannes Kepler University
A-4040 Linz, Austria
klement@flll.uni-linz.ac.at

Department of Mathematics and Descriptive Geometry
Faculty of Civil Engineering, Slovak Technical University
SK-813 68 Bratislava, Slovakia
mesiar@cvt.stuba.sk

Department of Mathematics, Faculty of Electrical Engineering Czech Technical University, CZ-166 27 Praha, Czech Republic navara@math.feld.cvut.cz

Abstract

We introduce T-admissible functions on T-tribes as "all possible" fuzzy extensions of (n-ary) Boolean functions. For the Frank family of T-norms, we give a characterization of T-admissible functions and a characterization of T-tribes. The paper summarizes recent results of [1,4,6,7,8] in a unified context.

1 Basic notions

The concept of T-tribes on a universe, i. e., a nonempty crisp set X, where T is a t-norm and the elements of the T-tribes are fuzzy subsets of X, was introduced in [1, 3] in order to have a proper generalization of the classical σ -algebras. Here we investigate the question which functions can be composed from the t-norm T and a fuzzy complement, i. e., with respect to which functions every T-tribe is closed.

Let us first recall some basic notions and facts from [1, 9]. A *t-norm* (triangular norm) is a function $T: [0,1]^2 \to [0,1]$ which is commutative, associative, monotone in each component, and satisfies the boundary condition T(1,x) = x. Throughout this paper, T denotes a t-norm.

¹This paper was presented at Fuzzy Workshop which took place in Kočovce (Slovakia), February 12–17, 1995.

²The third author gratefully acknowledges the support of the Aktion Österreich – Tschechische Republik, and the hospitality of the Department of Mathematics of the Johannes Kepler University of Linz during his stay there.

We shall deal mostly with Frank t-norms F_s . For $s \in (0, \infty) \setminus \{1\}$, they are defined by the formula

$$F_s: (x,y) \mapsto \log_s \left(1 + \frac{(s^x - 1)(s^y - 1)}{s - 1}\right).$$

The limit cases are:

 $F_0 = T_{\mathbf{M}} : (x, y) \mapsto \min(x, y) \text{ (minimum } t\text{-norm)},$

 $F_{\infty} = T_{\mathbf{L}} : (x, y) \mapsto \max(x + y - 1, 0)$ (Łukasiewicz t-norm),

$$F_1 = T_{\mathbf{P}} : (x, y) \mapsto x \cdot y \text{ (product } t\text{-norm)}.$$

For fuzzy subsets of X, say $f, g \in [0, 1]^X$, we extend a given t-norm T pointwise, i. e.,

$$T(f,g)(x) = T(f(x),g(x)).$$

This operation may be considered as an "intersection" of fuzzy sets. We define the complement by $x \mapsto 1-x$. Restricted to crisp sets, i. e., to characteristic functions, we obtain the usual set-theoretical operations.

The t-norm T can be naturally extended to a function of finitely or countably many variables, denoted $T_{m \in M}$.

Definition 1.1: A T-tribe on X is a collection $\mathscr{T} \subseteq [0,1]^X$ such that:

- 1. $1 \in \mathcal{T}$,
- 2. if $f \in \mathcal{T}$ then $1 f \in \mathcal{T}$,
- 3. if $(f_n)_{n \in \mathbb{N}} \subseteq \mathscr{T}$ then $T_{n \in \mathbb{N}} f_n \in \mathscr{T}$.

We denote by $\mathbf{1}_B$ the characteristic function of a crisp set $B \subset X$. For each T-tribe $\mathscr T$ on X, we define

$$\mathscr{T}^{\vee} = \{ Y \subset X \mid \mathbf{1}_Y \in \mathscr{T} \},$$

which is a σ -algebra on X, showing that T-tribes are proper generalizations of σ -algebras.

The following results are taken from [1].

Theorem 1.2:

- 1. For each $s \in (0, \infty)$, every F_s -tribe is a T_L -tribe ([1, Proposition 2.7]).
- 2. Every $T_{\mathbf{L}}$ -tribe is a $T_{\mathbf{M}}$ -tribe ([1, Proposition 2.7]).
- 3. All elements of a $T_{\mathbf{L}}$ -tribe \mathscr{T} are \mathscr{T}^{\vee} -measurable ([3],[1, Proposition 3.2]).

Since we may view the elements of [0,1] also as constant functions on a singleton domain, we define a T-tribe of constants as a set $K \subseteq [0,1]$ such that

- 1. $1 \in K$,
- 2. if $r \in K$ then $1 r \in K$,
- 3. if $(r_n)_{n \in \mathbb{N}} \subseteq K$ then $T_{n \in \mathbb{N}} r_n \in K$.

In particular, $T_{\mathbf{M}}$ -tribes of constants are all closed subsets of [0,1] which are symmetric with respect to 1/2 and contain 0 and 1. The only $T_{\mathbf{L}}$ -tribes of constants are

$$K_n = \left\{ \frac{i}{n} \mid i = 0, \dots, n \right\}$$

for $n \in \mathbb{N}$, and

$$K_{\infty} = [0,1].$$

For $s \in (0, \infty)$, there are only two F_s -tribes of constants, $K_1 = \{0, 1\}$ and K_{∞} .

A set $G \subseteq [0,1]^X$ T-generates a T-tribe $\mathcal T$ if $\mathcal T$ is the smallest T-tribe on X containing G.

Example 1.3: Let $n \in \mathbb{N}$, $n \ge 2$, and $G = \{1/n\}$. Then

- 1. $G T_{\mathbf{M}}$ -generates $\{0, 1, 1/n, (n-1)/n\}$,
- 2. G $T_{\mathbf{L}}$ -generates K_n ,
- 3. for $s \in (0, \infty)$, G F_s -generates K_{∞} .

2 Characterizations of T-admissible functions

For $n \in \mathbb{N}$, there are 2^{2^n} n-ary Boolean functions defined on $\{0,1\}^n$. We ask here which of their extensions to $[0,1]^n$ are applicable to elements of T-tribes (so that the result belongs to the same T-tribe). We find that these are so called T-admissible functions, introduced in [4,8].

Definition 2.1: An *n*-ary *T*-admissible function is a function $a:[0,1]^n \to [0,1]$ which belongs to the *T*-tribe $\mathscr T$ on $[0,1]^n$ *T*-generated by $\{\operatorname{pr}_1,\ldots,\operatorname{pr}_n\}$, where $\operatorname{pr}_i:(x_1,\ldots,x_n)\mapsto x_i$ is the projection onto the *i*-th component, $i=1,\ldots,n$.

If T is (Borel) measurable, all T-admissible functions are measurable. The following is a full characterization of T-admissible functions:

Proposition 2.2 (composition principle, cf. [8]): A function $a:[0,1]^n \to [0,1]$ is T-admissible if and only if for each T-tribe $\mathcal T$ and each $f_1,\ldots,f_n \in \mathcal T$ the composition $a(f_1,\ldots,f_n): x \mapsto a(f_1(x),\ldots,f_n(x))$ is an element of $\mathcal T$.

Therefore T-admissible functions are exactly the functions such that each T-tribe is closed with respect to them. Note that a necessary condition for the T-admissibility of a is

(A)
$$a(x_1,...,x_n) \in \{0,1\}$$
 whenever $\{x_1,...,x_n\} \subseteq \{0,1\}$.

This means that a restricted to Boolean arguments $\{0,1\}$ is a Boolean function. Thus T-admissible functions may be considered as "all possible" fuzzy generalizations of Boolean functions. As a consequence, the only nullary T-admissible functions are 0 and 1.

Corollary 2.3: The T-tribe \mathscr{A} of n-ary T-admissible functions is closed with respect to composition, i. e., for all $a, b_1, \ldots, b_n \in \mathscr{A}$ we have

$$a(b_1,\ldots,b_n)\in\mathscr{A},$$

where
$$a(b_1,\ldots,b_n): \mathbf{x} \mapsto a(b_1(\mathbf{x}),\ldots,b_n(\mathbf{x})) \quad (\mathbf{x} \in [0,1]^n).$$

Theorem 2.4: (i) The unary $T_{\mathbf{M}}$ -admissible functions are $\{0, 1, pr_1, pr'_1, pr_1 \land pr'_1, pr_1 \lor pr'_1\}$, where $pr'_1 = 1 - pr_1$.

Let $n \in \mathbb{N}$. All n-ary $T_{\mathbf{M}}$ -admissible functions are piecewise linear and they are uniquely determined by their values on $M = \{0, 1/2, 1\}^n$. The values on M belong to $\{0, 1/2, 1\}$. A consequence: There are finitely many n-ary $T_{\mathbf{M}}$ -admissible functions.

- (ii) A function $a:[0,1]^n \to [0,1]$ is $T_{\mathbf{L}}$ -admissible if and only if it is measurable and the value $a(x_1,\ldots,x_n)$ belongs to the $T_{\mathbf{L}}$ -tribe of constants $T_{\mathbf{L}}$ -generated by $\{x_1,\ldots,x_n\}$ whenever $\{x_1,\ldots,x_n\}\subseteq \mathbf{Q}$. In particular, a unary function $a:[0,1]\to [0,1]$ is $T_{\mathbf{L}}$ -admissible if and only if it is measurable and
- (K) $a(i/n) \in K_n$ for all $n \in \mathbb{N}$ and $i \in \{0, ..., n\}$ with gcd(i, n) = 1, (gcd denotes the greatest common divisor).

(iii) Let $s \in (0, \infty)$. A function $a : [0, 1]^n \to [0, 1]$ is F_s -admissible if and only if it is measurable and satisfies (A). In particular, all measurable t-norms are F_s -admissible. A consequence: An F_s -tribe is a T-tribe for any measurable t-norm T.

Corollary 2.5: Every element of a T_L -tribe $\mathcal T$ is a uniform limit of a monotone sequence of elements of $\mathcal T$ with countable range.

For $s \in (0, \infty)$, every element of an F_s -tribe \mathcal{T} is a uniform limit of a monotone sequence of elements of \mathcal{T} with finite range.

3 Characterizations of T-tribes

The characterization of T-admissible functions gives us a tool for the characterization of T-tribes. Before treating this problem in its full generality, we introduce the class of semigenerated T-tribes. This class is smaller, but easier to work with, and sufficiently general for many applications.

Definition 3.1: A collection $\mathscr{T} \subseteq [0,1]^X$ is called a *semigenerated* T-tribe if there exist a σ -algebra \mathscr{B} of subsets of X, a sequence $(C_n)_{n\in\mathbb{N}}$ of T-tribes of constants and a countable \mathscr{B} -partition $(X_n)_{n\in\mathbb{N}}$ of X such that

$$\mathscr{T} = \{ f \in \prod_{n \in \mathbb{N}} C_n^{X_n} \mid f \text{ is } \mathscr{B}\text{-measurable} \}.$$

Obviously, a semigenerated T-tribe is a T-tribe. Moreover, if T_1 and T_2 are t-norms and if a T_1 -tribe is a semigenerated T_2 -tribe, then it is also a semigenerated T_1 -tribe.

In particular, a collection $\mathscr{T} \subseteq [0,1]^X$ is a semigenerated $T_{\mathbf{L}}$ -tribe if there exist a σ -algebra \mathscr{B} of subsets of X and a disjoint sequence $(X_n)_{n\in\mathbb{N}}\subseteq\mathscr{B}$ such that

$$\mathcal{T} = \{ f \in [0,1]^X \mid f \text{ is } \mathcal{B}\text{-measurable}, \ f(x) \in K_n \text{ whenever } x \in X_n \}.$$

For $s \in (0, \infty)$, a collection $\mathscr{T} \subseteq [0, 1]^X$ is a semigenerated F_s -tribe if and only if there exist a σ -algebra \mathscr{B} of subsets of X and an $X_1 \in \mathscr{B}$ such that \mathscr{T} is the set of all \mathscr{B} -measurable elements of $\{0, 1\}^{X_1} \times [0, 1]^{X \setminus X_1}$.

The following theorem asserts that any countable subset of an F_s -tribe, resp. $T_{\mathbf{L}}$ -tribe, is contained in a semigenerated sub- F_s -tribe, resp. sub- $T_{\mathbf{L}}$ -tribe.

Theorem 3.2: Let $s \in (0, \infty]$. Every F_s -tribe F_s -generated by a countable set is semigenerated.

The full characterization of F_s -tribes, resp. $T_{\mathbf{L}}$ -tribes, is given using the $T_{\mathbf{L}}$ -tribes of constants K_n , $n \in \mathbb{N}$.

Theorem 3.3: (i) A collection $\mathscr{T} \subseteq [0,1]^X$ is a $T_{\mathbf{L}}$ -tribe if and only if there exist a σ -algebra \mathscr{B} of subsets of X and a sequence $(\nabla_n)_{n \in \mathbf{N}}$ of σ -filters in \mathscr{B} with $\nabla_m \subseteq \nabla_n$ whenever n is a divisor of m, such that

$$\mathscr{T} = \{ f \in [0,1]^X \mid f \text{ is } \mathscr{B}\text{-measurable}, \ f^{-1}(K_n) \in \nabla_n \text{ for all } n \in \mathbb{N} \}.$$

(ii) Let $s \in (0, \infty)$. A collection $\mathscr{T} \subseteq [0, 1]^X$ is an F_s -tribe if and only if there exist a σ -algebra \mathscr{B} of subsets of X and a σ -filter ∇_1 in \mathscr{B} such that

$$\mathscr{T} = \{f \in [0,1]^X \mid \text{f is \mathscr{B}-measurable, $f^{-1}(\{0,1\}) \in \nabla_1$}\}.$$

References

- [1] Butnariu, D., Klement, E.P.: Triangular norm-based measures and games with fuzzy coalitions. Kluwer, Dordrecht, 1993.
- [2] Frank, M.J.: On the simultaneous associativity of F(x, y) and x + y F(x, y). Aequationes Math. 19 (1979), 194–226.

- [3] Klement, E.P.: Construction of fuzzy σ-algebras using triangular norms. J. Math. Anal. Appl. 85 (1982), 543-565.
- [4] Klement, E.P., Navara, M.: A characterization of tribes with respect to the Lukasiewicz t-norm. Submitted for publication.
- [5] Mesiar, R.: Fundamental triangular norm based tribes and measures. J. Math. Anal. Appl. 177 (1993), 633-640.
- [6] Mesiar, R.: On the structure of T_s -tribes. Tatra Mountains Math. Publ. 3 (1993), 167–172.
- [7] Mesiar, R., Navara, M.: T_s -tribes and T_s -measures. Submitted for publication.
- [8] Navara, M.: A characterization of triangular norm based tribes. *Tatra Mountains Math. Publ.* 3 (1993), 161-166.
- [9] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York, 1983.