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Abstract

This paper presents a fuzzy generalization of the concept of implicational quantifiers, one of the
key concepts of a sophisticated approach to exploratory data analysis, the general unary hypotheses
automaton (GUHA). The proposed generalization is based on a method of fuzzy hypotheses testing,
which was elaborated for the statistical tests used in GUHA, and integrated into the context of
an observational calculus. After recalling the basic notions pertaining to implicational quantifiers,
and explaining the principles of the method used, the concept of a fuzzy-implicational quantifier
is introduced, and several results comcerning its properties are presented. The proposed fuzzy
approach is illustrated on a particular implicational quantifier, commonly encountered in GUHA.

1 Introduction

The intended paper concerns the use of fuzzy logic for ezploratory data analysis, i.e. for the kind
of data analysis the aim of which is to discover possible decision support and interesting relationships
captured in the processed data. A particular approach to exploratory data analysis is the one known
under the name General Unary Hypotheses Automaton (GUHA).

The method of automatic generating of hypotheses, underlying GUHA, attracted much attention
in the late seventies ([2], [3], [5]). First simple implementations of the method emerged very soon after
(6], [8]), followed later by more sophisticated systems ([2], [4], [9]).

Basically, the hypotheses generated by the GUHA approach are sentences of an observational cal-
culus, as the model of which a dichotomous data matriz is used, viewed as a realization of a random
sample of binary vectors. Each component of the vectors, i.e. each column of the matrix, corresponds

to some atomic property of real objects. Actually, only two particular kinds of sentences are considered
in the method ({1}, [3]):

(1) A GUHA implication captures the fact that some combination of present or absent atomic prop-
erties implies another such combination. It is defined by means of an implicational quantifier and
concerns the conditional probability of the occurrence of the latter combination, conditioned on
the occurrence of the former combination.

(i) A GUHA association captures a general dependence between two combinations of present or
absent atomic properties. It is defined by means of an associational quantifier and concerns the
stochastic independence of the random variables corresponding to the considered combinations.

Most of the procedures for generating GUHA implications and associations, employed in the existing
implementations of the approach, are based on statistical hypotheses testing. However, there is an
inner contradiction inherent to using common statistical tests to this end. Those tests always require
a precise formulation of the tested conditions on the random variables characterizing the underlying
real phenomena. On the other hand, due to its explorative purpose, GUHA is predominantly used
in situations in which the user has only rather vague knowledge of the underlying phenomena, thus
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being unable to make a competent choice of the conditions to be tested. Therefore, it would be
advantageous to reflect the vagueness of the user’s a priori knowledge in the way in which sentences in
GUHA are generated. To generalize the GUHA approach in that way is the objective of the research
reported in the paper. The proposed generalization is based on a method of fuzzy hypotheses testing,
which was elaborated for the statistical tests used in GUHA, and integrated into the context of an
observational calculus. Due to space limitations and the different nature of GUHA implications and
GUHA associations, only the former are dealt with.

2 GUHA implicational quantifiers recalled

Definition 1 Let n € N and ¢ = (t3,..., t,) € N™. For each m € N, denote M(m), more precisely
Myo,13(m), the set of all {0, 1}-structures of type 1,, with finite natural domain, i.e.

M(m) ={(S, fi, ., fm,) : SCN&|S| <0 & (Vi€ {1,...,m}) f; : S — {0, 1}}, (1)

where the symbol |S]| stands for the cardinality of a set S.
An observational predicate calculus (OPC) of type t is given by

{Py, ..., Pn,=}, X,2,J,Q), where
{P1,..., Py, =}, is a set of predicates, = being the identity predicate,
X is an at most countable set of variables,
z € X is a designated variable,
g {0,1,-,&,V,=>,<} is the set of junctors,
Q is an at most countable set of generalized quantifiers,

and it holds:
(1) (Vi€ {l,...,n}) the arity of P; of is ¢;,
(i) (Yq € @)(Am, € N) the arity of g is my,

(iii) (Yq € Q) a unique function Af, : M(m,) — {0, 1} is attached to ¢, called the associated function
of ¢, such that

(3)a) if My, My € M(m,) & M, and M, are isomorphic structures, then Af,(M;) = Afy(M>)
(3)b) the function Af defined

def
Af(g, M) = Af, (M) | ¢€Q,M e M(m,) (2)
is recursive in both variables.
If in particular ¢;= ... =t, = 1, then the OPC is called monadic.

Definition 2 Let — be a binary generalized quantifier of a monadic OPC, such that its associated
function Af_, fulfils

(VM1, My € M(2)) apr, > am, & bag, < bar, & AfL(M;) = 1= Af(My) =1, 3)
where for each M = (S, f1, f2) € M(2),
am =|{s:5€S& fi(s)= fals) = b = Hs: s €S & fi(s) = 1& fuls) = 0}].  (4)
Then the quantifier — is called implicational.

Example 1 Let a € (0, %), 9 € (0,1) be given constants. For each M = (S, fi, f2) € M(2), denote
M = am +by = |{s: 5 €S & fi(s) = 1}|. Finally, let —', more precisely — be a generalized
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quantifier defined by means of the associated function

L Mem@ e 5 mea-on-ica
Af_, (M) o . (5)
0| MeM@& Y (M6Q1-0™>a.

i=an

Following the terminology used in [3], —} will be called the quantifier of a likely implication with a
threshold 6.

3 Fuzzy hypotheses for the likely implication

Observe that the associated function of the quantifier —) can be expressed as

{1 | MEM@)&Ty<a (6)

Af_, (M) ¥
0 | MeM@)&Ty> o

™ . . .
where Tty = 3 (")8°(1 — )"~ is a realization of a test statistic used for testing the hypothesis

i=arr
p < 0, provided the system (f1(s), f2(s))ses for M = (S, fi, f2) € M(2) is viewed as a realization of a
twodimensional random sample, and

p=Pr(fz=1/fi=1). (7)

To replace that strictly formulated hypothesis by a more vague and relaxed one, the method of fuzzy
hypotheses testing proposed in [10] will be employed. According to that method, a null hypothesis to
be tested is viewed as a normaeq lized fuzzy set II on the set of admissible parameters, thus in our case

1= {(p, u(p)) : p € (0,1)} with p: L — (0, 1). (8)
The form of the membership function p of I reflects the nature of the vagueness captured by the
null hypothesis. The following situations are possible:

(i) A particular application may suggest a particular value . Then only the requirement that p < 4
should hold exactly can be relaxed. Instead, we can consider a null hypothesis paraphrased

p is not much higher than 8. 9

In that case, the membership function y of Il could have, e.g., one of the forms shown in fig. 1.

(i) Very often, the value 8 in the formulation p < 8 of the tested hypothesis is actually immaterial,
and its purpose is solely to prevent p from being too high. Then we can relax also the requirement
that p is to be compared to a particular value, and consider a null hypothesis paraphrased

p Is low. (10)
That case is illustrated by the membership functions in fig. 2.

In general, the membership function u of as fuzzy null hypothesis I corresponding to the quantifier
—' will be required to fulfil only the following weak conditions:

(i)  p is nonincreasing on (0, 1),
. I -1
(i) lim p(p) =1, (11)
(iii) lim u(p) =0.
Observe that these conditions cover both the examples in fig. 1, corresponding to the fuzzy null hy-
pothesis (9), and the examples in fig. 2, corresponding to (10).

Following [10], a test statistic for a fuzzy null hypothesis will be viewed as a random variable
assuming values in the space of real functions on the set of parameters, and a critical region for a fuzzy
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null hypothesis will be viewed as a mapping assigning to each significance level and each parameter a
Borel set of reals. In the particular case of the quantifier —', we get the test statistic defined

Ty(p) = 'Z (M -p™=t | pe(0,1), (12)

and the critical region

K(e,p) E(0,0) | a€(0,1),pe(0,1). (13)

4 Fuzzy-implicational quantifiers

Definition 3 Let — be a binary generalized quantifier of a monadic OPC, n € N, I C %" be a
set of parameters, and II be a particular normal_lzed fuzzy set on II.
Then — is called fuzzy-implicational w.r.t. II iff in addition to the associated function Af_,, a
parametrized associated function Paf_, : M(2) @ I — {0,1} is attached to it, with the following
properties:

(1) (3@wen) Paf_(-,7)= Af_,,
(i) the functions FafZ, : M(2) — (0,1) and Faf’, : M(2) — (0, 1), defined
MeM@2) &

s w):xell -(M,7) =
up{u(r) i w € L & Paf.(M,7) =1} I(EhrGH) Paf_.(M,7) =1

Faf®, (M) ¥ ¢ (14)
0 MeM(2)&
{ (Vxr € II) Paf_,(M,x) =0,
' MeM2)&
1—sup{u(r): 7 €1 & Paf_.(M,x) =0} |
def (3r € ) Paf . (M,x) =0
Faf (M) = (15)
MeM(2)&

(Vxr € II) Paf_,(M,x) =1,
fulfil the condition

(VMl,Mz € M(?)) ap, > ap, & by, < by, =

(16)
= Faf®, (M) > Faf®,(M;) & Faf’, (M) > Faf", (M;).

The function Faf?, will be called an accepting fuzzy associated function of — w.r.t. I, and Faf”, will
be called a rejecting fuzzy associated function of — w.r.t. II.

The fuzzy-implicationality of quantifiers is a generalization of their implicationality, in the sense
that for II corresponding to a one-element crisp set, definition 3 coincides with definition 2. Moreover,
both the accepting fuzzy associated function and the rejecting fuzzy associated function of a binary
generalized quantifier coincide with its usual ({0, 1}-valued) associated function in that case.

Theorem 1 Let M € M(2), ay and rpr be the numbers assigned to M according to (4), and
T{:) be a realization of the test statistic introduced in (12), obtained through replacing the random
variable a with its realization ap . Let further o be the constant from (5), and K be the critical region
introduced in (13). Finally, let II be a normalized fuzzy set on (0,1), such that for its membership
function p the conditions (11) are vahd

Then the generalized quantifier —' is fuzzy-implicational w.r.t. II, and its fuzzy associated functions
w.r.t. II fulfil

Faf® (M) =1, (17)
am > 0= (3pm >€ (0,1) Ty (@) = {pm} & Fafl (M) = 1— lim u(p). (18)
P—Par

If in addition g is right-continuous on (0, 1), (18) simplifies to
am > 0= (Ipm >€ (0,1)) Ty (@) = {pm} & FaflL:(M) = 1 - p(pu). (19)
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A proof of this theorem, as well as a proof of the theorem 2 below, can be found in [7].

Observe that the null hypothesis p < 8, corresponding to the likely implication, can be viewed as a
fuzzy null hypothesis with the membership function from figure 1c). Though this is not a membership
function of a one-element set, the following theorem shows that using it implies a coincidence between
the usual associated function of —', and its nonconstant fuzzy associated function Faf”,.. Consequently,
testing the hypothesis p < 6 is equivalent to testing the fuzzy hypothesis corresponding to the crisp set
(0,6). Similar results can be obtained also for other commonly encountered implicational quantifiers.

Theorem 2 Let § € (0,1), and py for M € M(2) be the parameter value introduced in the
theorem 1. Denote

iy = {(p, #(p)) : p € (0,1) & p(0,6) =1 & pl(8, 1) = 0}. (20)

Then for the quantifier —' = —}, the rejecting fuzzy associated function w.r.t. Iy fulfils

1 iff >0
(VM € M(2)) Faf’,.(M) = Af_.(M) = oM 2 (21)
0 iff pu <.

5 Conclusion

The results presented in this paper show that the usual method of generating GUHA implications
is actually a special case of the proposed fuzzy approach, i.e. that approach can be indeed considered
a fuzzy generalization of the traditional GUHA. However, it is only the basic principle of this gener-
alization which is outlined here. To become practically applicable, the approach must be extended to
cover a number of other concepts and issues.

Two such extensions, to GUHA associations and to the concept of a power function, are actually
already the matter of an ongoing research. Intended future extensions should include at least found-
edness, restricted sentences, and missing data. From the effectiveness point of view, it is important

to extend the approach to the concepts of hopeless antecedents and succedents, and to the notion of
improving predicates.
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