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Abstract

A simple approach to knowledge representation based on Petri nets is presented in this paper.
The possibility how the bivalued or/and fuzzy knowledge can be represented in a uniform
way by means of a model in analytical terms is pointed out. The algorithms of the truth
propagation as well as the knowledege inference are given in analytical terms. An illustrative
example is introduced.

1 Introduction

To synthetize the control for technical systems, especially for some kinds of discrete event
dynamic systems (DEDS) like flexible manufacturing systems (FMS), transport systems,
communication systems, etc., a suitable form of knowledge representation is needed in ad-
dition to the system model. It is necessary in order to express or/and specify additional
information concerning the control task, some external circumstances and influences, hu-
man experience, etc. Manytimes such knowledge can be fuzzy. Usually it can be expressed
by means of the production IF-THEN rules. A system of the production rules creates the
suitable knowledge base (KB).

This paper points out a simple approach to the knowledge representation by means of
logical Petri nets (LPNs) and fuzzy Petri nets (FPNs). The FPNs were originally introduced
in (3]. However, the approach based on such classical FPNs makes possible (see e.g. [1], [2])
to express only the fuzzy truth propagation. To express also the knowledge inference a
modified approach is used here.

2 The knowledge description

Knowledge can be understand to be consisting of some pieces - e.g. some statements S;,
¢ = 1, n;. Causality among such pieces of knowledge can be expressed by the IF-THEN
production rules - e.g. R;, j = 1, m;. When the analogy between the FPNs positions
(i.e. places) and the statements as well as the analogy between the FPNs transitions (taken
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Figure 1: The rule R; with the input and output statements

together with their input and output positions) and the rules are made, the knowledge can
be represented by the FPNs. In order to illustrate this analogy, let us introduce Fig. 1.

Consequently, the structure of the KB can be formally defined to be the following quadru-
plet

(S,R,UTY ;; SNR=0 ; ¥nr =490 (1)

where
S ={51,..., 54, } is a finite set of the statements.
Si, ¢ = 1,n,, are the pieces of knowledge (the elementary statements).
R ={Ry,...,Ry,,} is a finite set of the rules.
R;, 3 = 1,m4, are the rules either in the form of implications:
R; : (S;and Syand...and S.) = (SzandS.)
or in the form of IF-THEN structures:
R; : IF (S, and Syand...and S;) THEN (S and S.).
where S,, Sb, ..., S. are the input statements of the rule R;, and the Sy, S, are the output
statements of the rule R;.
¥ C S x Ris a set of the causal interconnections between the statements entering the
rules and the rules themselves. It can be expressed by means of the incidence matrix
Wy = {5} i=1,n1;j = 1,m;. In the analogy with the LPNs P¥ € {0,1} and in
case of the LPNs with fixed structure they are constant (in case of the LPNs with variable
structure they are the bivalued functions). In the analogy with the FPNs 1[)5 €<0,1>.
It means that the element 7,b5 represents the absence (when 0), presence (when 1) or
a fuzzy measure of existence (when the value is between these boundary values) of the
causal relation between the input statement .S; and the rule R;. In other words, each ¢V5 ,
K = 1, Ny are members of a fuzzy set with the corresponding membership functions
Hapy; (d’g )-
I' € R x S is a set of the causal interconnections between the rules and the statements
emerging from them. It can be expressed by means of the incidence matrix
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I'x = {75}, 7% € {0,1} in analogy with LPNs or v €< 0,1 > in analogy with
FPNs, i = 1,m;; j = 1,ny, i.e. very analogically (to the matrix Wx) expressing the
occurrence of the causal relation between the rule R; and its output statement S;. Each
'yg , K = 1, N, are members of a fuzzy set with the corresponding membership functions
Hoyij (7:13{ )-

¢ is an empty set.

The KB ”dynamics” development (i.e. the statements truth propagation) can be formally
expressed as follows

(2,0,6,8,M) ; dNQ=0 2)

where
® = {®o,..., Py, } is a set of the state vectors of the KB.
Py = (65, .., qﬁgnl )T; K = 0, N, is the state vector of the KB (the state of the state-
ments truth propagation) in the step K.
K is the discrete step of the KB dynamics development
T symbolizes the vector or matrix transposition
N, is an integer representing the number of different situations during the KB dy-
namics development (i.e. during the statements truth propagation)
g , ¢ = 1,n, is the state of the truth of the elementary statement S; in the step K.
It means that the statement is false (when 0), true (when 1) or that the statement is
true with a fuzzy measure (when this parameter acquires its value from the real interval
between these two boundary values). In other words, for each S; the fg{'., K=1M
are members of a fuzzy set with the corresponding membership functions g, (6%).
Q ={Qq,..., 0N, } is a set of the "control” vectors of the KB.
Qx = (wg, ...,wﬁ’ml )T's K =0, N, is the ”control” vector of the KB (i.e. the state of
the rules evaluability) in the step K.
ng , J = 1,my is the state of the rule R; evaluability in the step K. It means that
the rule is not able to be evaluated (when 0), the rule is able to be evaluated (when
1) or that the rule is able to be evaluated with a fuzzy measure (when this parameter
acquires its value from the interval between these two boundary values). It depends on
the fuzzy values of the intput statements truth.
o1 : ® x ) — & is a transition function of the KB.
@, is the initial state vector of the KB.

M = {my, ..., my;, } is the set of the vectors representing the rules truth values in the step
K.
mg = (mf,, ..., m§,, )*; K =0, N is the vector of the rules truth values in the
step K.
mgj €<0,1>, j=1,m,; expresses the fuzzy truth value of the rule R; in the step
K. In other words, for each R; the mgj, K = 1, N; are members of a fuzzy set with

the corresponding membership functions Pomp, (mgj).

It is better for us to write mg in the form of the (m; x m;)-dimensional diagonal matrix
Mg = diag {mf , ..., mRIfml}.

To imagine the introduced facts see Fig. 2. It can be said that the LPNs are (using the fuzzy
sets terminology) a crisp form of the FPNs.

As to the membership functions of the statements truth, the rules truth and the fuzzy
measures of existence of the causal interconnections are not analysed in details because they

strongly depend on the actual application and they must be set by an expert from the actual
domain.



Figure 2: The simple fuzzy rule R; with corresponding membership functions

The KB dynamics development (more precisely the transition function 6;) can be ex-
pressed in analytical terms as follows

¢K+1 = QKQAKMQK ) K = Ov Nl ’ QK[;(:O = ®, (3)
Ag =TLor ¥k (4)
ViandQx < Pk (5)

where

and is the operator of logical multiplying in general. For both the bivalued logic and the
fuzzy one it can be defined (for scalar operands) to be the minimum of its operands.
For example the result of its application on the scalar operands a, b is a scalar ¢ which
can be obtained as follows: aandb = ¢ = min {a, b}.

or is the operator of logical additioning in general. For both the bivalued logic and the
fuzzy one it can be defined (for scalar operands) to be the maximum of its operands.
For example the result of its application on the scalar operands a, b is a scalar ¢ which
can be obtained as follows: aorb = ¢ = maxz {a, b}.

To derive the knowledge inference suppose that the inference mechanism consists of two
parts:

1. the mechanism of the statements truth propagation (something like a carrier-wave) -
when the rules truth values are crisp (equal to 1).

2. the influence of the fuzzy values of the rules truth (something like a modulation wave).



2.1 The truth propagation

The automatic mechanism of the statements truth propagation can be analytically described
as follows

@K = _T_Lf_g_q)}{—_-lm —@K (6)
vk = Whand Bk (7)
Wik = NegVK = lpm — VK =1, — (‘I’£M (1n, — ®K)) (8)

= neg(¥i and (neg ¥x)) (9)
Qx = wg (10)

where the meaning of quantities is the following

vk is a mj-dimensional auxiliary vector pointing out (by its nonzero elements) the rules
that cannot be evaluated, because there is at least one false (of course in the LPNs
analogy) statement among its input statements

Wk is a my-dimensional ”control” vector pointing out the rules that have all their input
statements true and, consequently, they can be evaluated in the step K of the KB
dynamics development. This vector is a base of the inference, because it contains
information about the rules that can contribute to obtaining the new knowledge - i.e.
to transfer the KB from the state @k of the truth propagation into another state ®x ;.
These rules correspond to the nonzero elements of the vector wg.

neg is the operator of logical negation in general. For both the bivalued logic and the fuzzy
one it can be defined (for scalar operands) to be the complement of its operand. For

example the result of its application on the scalar operands a is a scalar b which can be
obtained as follows: nega = b =1 — a.

After imbedding (10) into equation (3) we have
Pr1 = Bk or Ak and (neg(¥ and (neg ®x))) (11)

2.2 The knowledge inference

The automatic mechanism of the knowledge inference can be described as follows

‘DK = w‘PKzlnl —@K (12)
vk = Wkand Bk (13)
WK = va = ].m1 — VK = ].m1 —_ (‘I’%m (lm — @K)) (14)
= neg(¥% and (neg Pk)) (15)
Qx = Mg.wg = Mg . (neg(¥k and (neg ®x))) (16)
After imbedding (16) into equation (3) we have
x4 = Pk or A and (M . (neg(¥k and (neg Bk)))) (17)

3 An illustrative example

Consider a set of the following statements:

Sl — IIAII 5'2 — IIBII S3 — IICII 514 — IIDII



Figure 3: The PN-based representation of the KB

connected by the following systems of rules:
R, : IF(S,andS;)THEN(S3) R, :IF(S;andS3)THEN(Ss)
R3 : IFS4 THENSl R4 . IFS4 THENSg
The situation is illustrated on Fig. 3. Let us consider the case of the KB where the structure
is given as crisp. However, both the statements truth and the rules truth values are fuzzy.
Consider the initial state of the statements truth in the form: "A” is true with fuzzy measure
0.3 (l.e. ¢3 = 0.3); "B"is true with the fuzzy measure 0.5 (i.e. ¢3, = 0.5).
Hence,
®, =(0.3,05,0.0,0.0)7; neg® =(0.7,0.5,1.0,1.0)7
vo = (0.7, 1.0, 1.0, 1.0)T ; wo = (0.3, 0.0, 0.0, 0.0)T
When we consider the rules truth values mg = (0.8, 0.7, 0.9, 1.0)T; K =0, V;
Qo = (0.24,0.0,0.0,0.007; &, = (0.3,0.5,0.24,0.0)T
neg®, =(0.7,0.50.76, 1.0)T; v, = (0.7,0.76, 1.0, 1.0)T)
w; = (0.3,0.24,0.0,0.07; £, = (0.24,0.168, 0.0, 0.0)T
®, = (0.3,0.5,0.24, 0.168)T
It means that (as a consequence of the state of the statements truth: "A" is true with the
fuzzy measure 0.3 and "B" is true with the fuzzy measure 0.5) the statements “C" will be
true with the fuzzy measure 0.24 and "D” will be true with the fuzzy measure 0.168 (i.e.
%, = 0.24 and ¢% = 0.168) .
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