Some Note on N-compact Sets in L-fuzzy Topological Spaces

Zhang Xingfang

Department of Mathematics, Liaocheng Education College, Shandong 252000, P.R.China

1. Introduction

The N-compactness in fuzzy topological spaces introduced by Wang [2] is the most reasonable fuzzy compactness in various kinds of fuzzy compactness. Zhao [1] has generalized it to the general L-fuzzy topological spaces (L-fts's, for short), and given some characterizations of N-compact L-fuzzy subsets. Based on this, a series of works have been launched [4,5]. But it is necessary to point out that N-compact L-fuzzy subsets have no the characterizations by means of covers and the family of (closed) L-fuzzy subsets which has finite intersection property. The purpose of this note is to give this three kinds of characterizations of N-compact L-fuzzy subsets.

2. Preliminaries

Our terminology and symbols follows [1]. Specifically, L always denote a fuzzy lattice, its smallest element and greatest element are 0 and 1 respectively. X always denote a non-empty crisp set. The collection of all the L-fuzzy subsets on X, denoted by L^{x} , can be naturally seen as a fuzzy lattice (L^{x} , \leq , \vee , \wedge , '), its smallest element and greates element are 0_{x} and 1_{x} respectively, where $0_{x}(x) \equiv 0$ and $1_{x}(x) \equiv 1$ for any $x \in X$. The

set of all the nonzero union-irreducible elements of L is denoted by M(L). The elements in $M(L,X) = \{x_a : x \in X, a \in M(L)\}$ are called points. Put $p(L) = \{p \in L : 1 \neq p \text{ is prime elements of L}\}$ It is easy to check that $a \in M(L)$ iff $a' \in p(L)$. For $A \in L^x$ and $x_a \in M(L,X)$, x_a is called the point in A, if $x_a \in A$, i.e., $a \leq A(x)$. For each $\Omega \subset L^x$, we define $\Omega' = \{A' : A \in \Omega\}$, $A \in \Omega$, $A \in \Omega$. Let $A \in \Omega$, $A \in \Omega$, $A \in \Omega$. For $A \in L^x$ and $A \in L$, $A_{[a]} = \{x \in X : A(x) \geqslant a\}$. Let $A \in \Omega$, and define $A \in L^x$, $A \in \Omega$. We denote by A the closure of A in $A \in L^x$, $A \in \Omega$.

Definition 2.1 [3]. A subset B of L is called a maximal set of $a \in L$, if $\triangle B$ =a and for each subset C of L with $\triangle C \le a$ and each $x \in B$, there is $y \in C$ such that $y \le x$. The union of all the maximal sets of a is denoted by a(a), and put $a^*(a) = a(a) \cap p(L)$.

Lemma 2.2 [3]. (1) For each $a \in L$, there always exists a maximal set a (a) of a.

- (2) For any $r \in p(L)$, $\wedge a^*(r) = r$.
- (3) For any $r \in p(L)$, $a^*(r) = (\beta^*(r'))'$, where $\beta^*(r') = \beta(r') \cap M(L)$, $\beta(r')$ is the minimal set of $r' \in M(L)$.
- 3. Some characterizations of N-compact L-fuzzy sets

Definition 3.1. Let (L^{\times}, δ) be an L-fts, $\Lambda \in L^{\times}$, $r \in p(L)$. $\Omega \subset L^{\times}$ is called an r-cover of A, if for each $x \in \Lambda_{\Gamma^{r}}$, there exists $U \in \Omega$ such that $x \in \iota_{r}(U)$. Ω is called an r+-cover of A, if there exists $t \in a^{*}(r)$ such that Ω is an t-cover of A.

Definition 3.2. Let $(L^x, 8)$ be an L-fts, $A \in L^x$, $r \in p(L)$. $\Omega \subset L^x$ is

called the family which has finite r^+ -intersection property (or briefly, f. r^+ -i.p.) in A, if for each $\psi \in 2^{(\Omega)}$ and every $t \in a^*(r)$, there is $x \in A_{[t']}$ such that $(\wedge \psi)(x) \ge t'$.

Theorem 3.3. Let $(L^{\mathbf{x}}, \delta)$ be an L-fts, $A \in L^{\mathbf{x}}$. Then the following are equivalent:

- (1) A is N-compact;
- (2) For each $r \in p(L)$ and every r-cover Ω of A there exists $\psi \in 2^{\langle \Omega \rangle}$ such that ψ is an r⁺-cover of A;
- (3) For each $r \in p(L)$ and every family $\Omega \subset \mathcal{S}'$ which has $f.r^+-i.p.in$ A, there is $x \in A_{\Gamma r'-1}$ such that $(\wedge \Omega)(x) \geqslant r'$.
- (4) For each $r \in p(L)$ and every family $\Omega \subset L^x$ which has $f \cdot r^+ i \cdot p \cdot in A$, there exists $x \in A_{\Gamma r'-1}$ such that $(\wedge \Omega^-)(x) \ge r'$.
- Proof. (1) ==> (2) Suppose that A is N-compact and Ω is an r-cover of A ($r \in p(L)$). Then $\Theta = \Omega'$ is an r'-RF of A (see Definition 4.2 of [1]). In fact, for each point x_r , \in A, we see that $x \in A_{\Gamma r'}$]. Then there is $U \in \Omega$ such that $x \in \iota_r(U)$, thus $U' \in \eta(x_{r'})$ (see Definition 2.3 of [1]). This shows that Θ is an r'-RF of A. From the N-compactness of A, there is $\psi = \{U_1, \ldots, U_n\} \in 2^{<\Omega}\}$ such that $\Phi = \psi' \in 2^{<\Theta}\}$ is an (r')-RF of A, i.e., there is $t \in \beta^*(r')$ such that Φ is an t-RF of A. Now we will prove that ψ is an r^+ -cover of A. Put s = t', then $s \in (\beta^*(r'))' = \alpha^*(r)$. For each $x \in A_{\Gamma s'} = A_{\Gamma t \cup T}$, x_t is a point in A, thus there is $U_i \in \psi$ such that $U'_i \in \eta(x_t)$, so $x \in \iota_s(U_i)$. This shows ψ is an s-cover of A, and hence ψ is an r^+ -cover of A.
- (2) ==> (3) Suppose that (3) is untenable, then there exist $r \in p(L)$ and some $\Omega \subset \mathcal{S}'$ which has $f.r^+-i.p.$ in A such that $(\wedge \Omega)(x) \not\geqslant r'$ holds for each $x \in A_{\Gamma r'-1}$, i.e., $x \in \iota_r(\nabla \Omega')$, and so there is $P \in \Omega$ such that $x \in \iota_r(P')$. This shows that $\Omega' \subset \mathcal{S}$ is an r-cover of A.By (2),

- there is $\psi = \{P_1, \dots, P_n\} \in \mathbb{Z}^{(\Omega)}$ such that ψ' is an r^+ -cover of A, i.e., there is $t \in a^*(r)$ such that ψ' is an t-cover of A. Hence for any $x \in A_{(t')}$, there is $P_i \in \psi$ such that $x \in \iota_t(P_i)$, so $x \in \iota_t(\nabla \psi')$, $(\wedge \psi)$ $(x) \not \geq t'$. This contradicts that Ω has $f.r^+$ -i.p. in A.
- (3) ==> (4) Suppose that $\Omega \subset L^{\mathbf{x}}$ has f.r⁺-i.p. in A, then it is clear that $\Omega^- \subset \mathcal{S}'$ has f.r⁺-i.p. in A.From (3) we see that there is $\mathbf{x} \in A_{[r']}$ such that $(\wedge \Omega^-)(\mathbf{x}) \geqslant r'$.
- (4) ==> (1) Suppose that A is not N-compact, then from definition 4.4 in [1], there exist $a \in M(L)$ and some $a RF \oplus C \otimes C'$ of A such that any $\psi \in 2^{(\Phi)}$ is not an $\alpha^- RF$ of A, i.e., ψ is not an γRF of A for any $\gamma \in \beta^*(a)$. Hence there is some point $x_{\gamma} \in A$ such that $P \in \eta$ (x_{γ}) for any $P \in \psi$, i.e., $\gamma \leq P(x)$, and so $\gamma \leq (\wedge \psi)(x)$. Note that $x \in A_{[\gamma]}$ and $\gamma' \in (\beta^*(a))' = a^*(a')$. From this we see that Φ has $f.(a')^+$ -i.p. in A. By (4) there is $x \in A_{[\alpha]}$ such that $(\wedge \Phi^-)(x) = (\wedge \Phi)(x) \geqslant a$, and thus $P(x) \geqslant a$ holds for each $P \in \Phi$. This shows that $P \in \eta$ (x_{α}) holds for each $P \in \Phi$, this contradicts that Φ is an a RF of A, and hence A is an N-compact set, and the proof is completed.

References

- [1] Zhao Dongsheng, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128(1987), 64-79.
- [2] Wang Guojun, A new fuzzy compactness defined by fuzzy nets, J. Math. Anal. Appl. 94(1983), 1--23.
- [3] Wang Guojun, The Theory of L-Fuzzy Topological Spaces, Shanxi Normal University Press, Xi'an, China, 1988 (in Chinese).
- [4] Meng Guangwu, Lowen's compactness in L-fuzzy topological spaces, Fuzzy Sets and Systems, 53(1993), 329--333.

[5] Zhang Xingfang, Covering the characterizations for some kinds of L-fuzzy compact subsets in L-fuzzy topological spaces, J. Liaocheng Teacher's College, 3(1994), 18--24 (in Chinese).