A SIMPLE COMPUTATIONAL METHOD OF β and β and in multilevel fuzzy linear weighted analysis

Li Su-Yun

Dept. of Mathematics, Jilin Province College of Education,
130022, ChangChun, China.

Abstract: On the basis of [1], this paper presents a simple method to find β_{\max} and β_{\min} in multilevel fuzzy linear weighted analysis. This method has the computational quantities of finding β_{\max} and β_{\min} diminished greatly.

Keywords: Multilevel fuzzy linear weighted analysis; Orthogonal layout; Orthogonal design; Combination; Range.

1. INTRODUCTION

Multilevel fuzzy linear weighted analysis method can settle some problems that are difficult to solve by linear regression analysis. This method need apply fuzzy matrix

to compute some $\beta_{p_1p_2\ldots p_k}$ values. When m is a even number, we need compute $\beta_{p_1p_2\ldots p_k}$ values according to the two formulas followed

$$\frac{\sum_{i=1}^{k} \sum_{\mathbf{u}=\underline{m}+1}^{\mathbf{r}_{i\mathbf{p}_{i}\mathbf{u}}} - \sum_{i=1}^{k} \sum_{\mathbf{u}=1}^{\underline{m}} \mathbf{r}_{i\mathbf{p}_{i}\mathbf{u}} - (\underline{m-2}) \sum_{i=1}^{k} \mathbf{r}_{i\mathbf{p}_{i}i}}{\sum_{i=1}^{k} \sum_{\mathbf{u}=\underline{m}+1}^{\mathbf{r}_{i\mathbf{p}_{i}\mathbf{u}}} \mathbf{r}_{i\mathbf{p}_{i}\mathbf{u}}^{2} + (\frac{1}{4} \sum_{i=1}^{k} \sum_{\mathbf{u}=1}^{m} \mathbf{r}_{i\mathbf{p}_{i}\mathbf{u}}^{2})^{2}} } (i)$$

Here jem

Here $j > \frac{m}{2}$

Then we find

(j)
$$\beta_{\min} = (p_1, p_2, \dots, p_k)$$
 $\beta_1 p_2 \dots p_k$ (j) $\beta_{\max} = (p_1, p_2, \dots, p_k)$ $\beta_1 p_2 \dots p_k$ (j) $\beta_{\max} = (p_1, p_2, \dots, p_k)$ $\beta_1 p_2 \dots p_k$ $\beta_2 p_2 \dots p_k$ (4) Here we take all the combination of (p_1, p_2, \dots, p_k) there are

Here we take all the combination of (p_1, p_2, \ldots, p_k) there are n^k altogether. If n=5, k=5, we need compute $5^k=3125$ $\beta_{p_1p_2...p_k}$ values. So the computational quantities are very large when n and k are larger.

Then there is some difficulty in applying this method. In order to diminish the computational quantities. We design a part of combinations of p_1, p_2, \dots, p_k using orthogonal layout, and find $\beta_{p_1 p_2 \dots p_k}$

of p_1, p_2, \cdots, p_k using orthogonal layout, and that $p_1, p_2, \dots p_k$ to the part of combinations. Then according to the characteristic of orthogonal layout β_{\max} and β_{\min} are deduced.

2. ORTHOSONAL DESIGN METHOD TO FIND β mass AND β mass

Let a_1, a_2, \dots, a_k express k factors, A_1 is universe of discourse of a_1 , i = 1, 2, ..., k. n is the number of the subsets divided with A_1 , b is predicted quantity, B is universe of discourse of b,m is the number of the subsets divided with B.

The following is the orthosonal design method getting β max and β min.

First according to n,k, we select orthogond layout $L_a(t^a)$. The principle of selection is: t-n,q>k. Then factors a_1,a_2,\ldots,a_k are arranged into any k columns in $L_a(t^a)$, and according to the combination

arranged and using formulas (1),(2),we compute $\beta_{p_1p_2...p_k}$. Then according to the characteristic of $L_n(t^n)$ we deduce β_{\max} and β_{\min} . Specitic step is the following:

(I) Compute I $\{^{D}, \text{II} \{^{D}, \dots, t_{f}^{D}\}$, where $\}$ is the sum of the $\beta_{p_1p_2, \dots, p_{k}}$ appropriated level number i in the column number i in the $L_{\mathbf{z}}(t^{\mathbf{q}}), \text{II}_{i}^{(D)}$ is the sum of the $\beta_{p_1p_2, \dots, p_{k}}$ appropriated level number 2 in the column number i in the $L_{\mathbf{z}}(t^{\mathbf{q}}), \dots, t_{f}^{(D)}$ is the sum of the $\beta_{p_1p_2, \dots, p_{k}}$ appropriated level number t in the column number t in the $L_{\mathbf{z}}(t^{\mathbf{q}})$.

(II) Find the biggest (smallest) value in the I $\{P^0, II\}_{0}^{\{D\}}, ..., t_{\{D\}}^{\{D\}}$ in every column. Let's suppose that levels that the biggest (smallest) value correspond in every column are $t_1, t_2, ..., t_k$ respectively, then

 $eta_{t_1t_2...t_k}^{(j)}$ (if there is no $eta_{t_1t_2...t_k}^{(j)}$ in the $L_u(t^u)$, it will be filled) is called the initial biggest (smallest) value. Take off the biggest(smallest) value in every column.

(III) First find the biggest (smallest) value in the rest values in every column, then find the biggest (smallest) value in the biggest (smallest) values. Let level that the biggest (smallest) value correspond in the column number i be t', then footnote t, of the $\beta_{t_1t_2...t_k}^{(j)}$ is changed into $t'_1,nemely$ $\beta_{t_1t_2...t'_1...t_k}^{(j)}$ (if there is no $\beta_{t_1t_2...t_k}$ in the $L_s(t^q)$, it will be filled). The biggest (smallest) value of the $\beta_{t_1t_2...t_k}$ and $\beta_{t_1t_2...t_1}$ is considered as the temporary biggest (smallest) value. Let's suptime pose that the temporary biggest (smallest) value is $\beta_{t_1t_2,\ \dots\ t_k}^{(j)}$, take off the biggest (smallest) value that t', corresbond. (IV) Work on 3 again. If there are the same two biggest (smallest) values in a certain column, and the levels they correspond are t'r, t"r, then the footnote t_i of the $\beta_{t_1t_2...t_k}$ is changed into t'_r , t''_r respectively, get $\beta_{t_1t_2...t'_r...t_k}$, $\beta_{t_1t_2...t'_r...t_k}$ (if there are no one's, they will be filled). The biggest (smallest) value of the (j) (j) (j) (j) (j) $\beta_{t_1t_2...t_k}, \beta_{t_1t_2...t'_1...t_k}$ and β $t_1t_2...t'_1...t_k$ is considered as the temporary biggest (smallest) value. If (smallest) values in the two columns are the same, we get the biggest (smallest) value in the column that range is smaller. Do it until the values in the $L_{\bullet}(t^{\circ})$ are finished, so the β_{max} and

3. EXAMPLE

Let n-k-3, m-2, and

 β_{min} are determined.

m=2 is a even, we have formulas

$$\frac{\sum_{i=1}^{3} r_{ip_{i}2} - \sum_{i=1}^{3} r_{ip_{i}1}}{\sum_{i=1}^{3} r_{ip_{i}2})^{2} + (\frac{1}{4} \sum_{i=1}^{3} \sum_{u=1}^{2} r_{ip_{i}u})^{2}} - \frac{3}{\sum_{i=1}^{3} r_{ip_{i}2} - \sum_{i=1}^{3} r_{ip_{i}1}}{\sum_{i=1}^{3} r_{ip_{i}1}} - \frac{3}{\sum_{i=1}^{3} r_{ip_{i}1}} -$$

 $\beta_{\text{max}}^{(2)} = \max_{\substack{(p_1, p_2, p_3)}} \beta_{p_1 p_2 p_3}^{(2)}$ (8)

The number of all the combination of (p_1, p_2, p_3) is $3^3 = 27$. Before we find $\beta_{\min}^{(1)}$ and $\beta_{\max}^{(2)}$ with original method, we must compute 54 β values.

Now we find β values with orthogonal design method. Since n-k-3, we select orthogonal layout L₀(3⁴). Then factors a_1,a_2,a_3 are arranged in the first three columns in the L₀(3⁴). According to level combination arranged in the L₀(3⁴) and using formulas (5),(6),we compute $\beta p_1^{(2)}p_2p_3$ and $\beta p_1^{(2)}p_2p_3$. See Table 1.

		T	able 1	$L_{\theta}(3^4)$		
	1	2	3	4	β (1)	β (2) p ₁ p ₂ p ₃
	à ₁	a ₂	23			
1	1	1	1	<u> </u>	$\beta_{111}^{(13)} = -12.598$	$\beta_{111}^{(2)} = -1.106$
2	ì	2	2	2	$\hat{\mathbf{B}}_{122}^{(1)} = -0.151$	
3	1	3	8	3	$\beta_{133}^{(1)}=0.939$	$\beta_{133}^{(2)}=3.096$
4	2	1	2	3	$\beta_{212}^{(1)} = -0.450$	$\beta_{212}^{23} = -0.273$
5	2	2	3	į	β ₂₂₃ = 0.257	$\beta_{223}^{(2)}=0.354$
6	2	3	1	2	$\beta_{231}^{(1)} = 0.080$	$\beta_{281}^{(2)} = 0.089$
7	3	1	3	2	β ₃₁₃ ¹⁷ =0.150	$\beta_{313}^{(2)}=0.164$
8	3	2	1	3	$g_{32}(3) = -0.265$	β s21 =-0.218
9	3	3	2	1	$\beta_{332}^{(1)}=0.718$	$\beta_{332}^{(2)}=3.421$
		-12.898				
Ht.,	-0.113	-0.159	0.117			
$\Pi(z)$	0.603	1.737	1.346			
$I_i^{(2)}$	1.861	-1.215	-1.235			
II (5)	0.170	0.007	3.019			
III (2)	3.367	6.606	3.614			

Now we analyse β values in Table 1. For the first three columns in the L₉(3⁴),we compute $I_{\mathfrak{S}^{\mathfrak{D}}}, II_{\mathfrak{S}^{\mathfrak{D}}}, i=1,2,3; j=1,2$ (See Table 1)

First we determine $\beta_{\min}^{(1)}$. The smallest value of the $\prod_{i=1}^{(1)}, \prod_{i=1}^{(1)}$ is -11.808. The smallest value of the $\prod_{i=1}^{(1)}, \prod_{i=1}^{(1)}, \prod_{i=1}^{(1)}$ is -12.898. The smallest value of the $\prod_{i=1}^{(1)}, \prod_{i=1}^{(1)}, \prod_{i=1}^{(1)}, \prod_{i=1}^{(1)}$ is -12.781. Levels they correspond are 1,1,1 respectively,thus $\beta_{\min}^{(1)}$ is initial smallest value. Take off -11.808,-12.898,-12.781. The smallest values of the rest values in every column are -0.113,-0.159,-0.117 respectively. The smallest value of the -0.113,-0.159,-0.117 is the -0.159. Level that -0.159 correspond is 2,thus the footnote number 2 of $\beta_{\min}^{(1)}$ is changed to 2,get $\beta_{\min}^{(1)}$, there is no $\beta_{\min}^{(1)}$ in the Table 1, we fill $\beta_{\min}^{(1)} = -2.966$. Since $\beta_{\min}^{(1)} = -2.966 > -12.596 = \beta_{\min}^{(1)}$, hence $\beta_{\min}^{(1)}$ is considered as the temporary smallest value, take off - 0. 169. By analogy, at last we deduce $\beta_{\min}^{(1)} = \beta_{\min}^{(1)} = -12.596$.

As above, we analyse $I_{i}^{(2)}$, $II_{i}^{(2)}$, $II_{i}^{(2)}$ (i=1,2,3), deduce $\beta_{max}^{(2)} = \beta_{max}^{(2)} = 19.76\tilde{c}$. In order to verify whether the result is exact, we compute all β values, there are 54 altogether, see Table 2.

Table 2

$\beta_{21}^{617} = -12.596$	$\beta_{132}^{(1)}=0.390$	β ₁₂₂ (1)=-0.151	$\beta_{211}^{(1)} = -2.736$
β 1331'=0.939	$\beta_{213}^{(1)} = -0.738$	$\beta_{212}^{(1)} = -0.450$	$\beta_{221}^{(1)}=0.698$
β 223 1 =0.257	$\beta_{222}^{(1)}=0.077$	$\beta_{231}^{(1)}=0.080$	$\beta_{232}^{(1)}=0.336$
β a τ ^{ά 13} =0.150	$\beta_{233}^{(1)}=0.627$	$\beta_{321}^{(1)} = -0.265$	$\beta_{311}^{(1)} = -4.243$
$\beta_{332}^{(1)}=0.718$	$\beta_{312}^{(1)} = -0.109$	$\beta_{121}^{(1)} = -2.966$	$\beta_{322}^{(1)}=0.483$
$\beta_{112}^{(1)} = -1.588$	$\beta_{323}^{(1)}=1.190$	$\beta_{113}^{(1)} = -4.805$	$\beta_{331}^{(1)}=0.712$
$\beta_{123}^{(1)} = -0.052$	$\beta_{333}^{(1)}=1.394$	$\beta_{131}^{(1)} = -0.333$	$\beta_{11}^{(2)} = -1.106$
$\beta_{112}^{(2)} = -0.581$	$\beta_{132}^{(2)}=0.721$	β ₁₁₃ (2)=-1.154	β (2)=3.090
$\beta_{12}^{(2)} = -0.814$	$\beta_{211}^{(2)} = -0.849$	$\beta_{122}^{(2)} = -0.129$	$\beta_{212}^{(2)} = -0.273$
β ₁₂₃ =-0.050	$\beta_{213}^{(2)} = -0.423$	$\beta_{131}^{(2)} = -0.256$	$\beta_{221}^{(2)} = -0.374$
β 222° =0.087	$\beta_{225}^{23}=0.354$	$\beta_{231}^{(2)}=0.089$	$\beta_{232}^{(2)}=0.690$
β ₂₃₈ (2)=1.988	βai;2'=-1.015	$\beta_{312}^{(2)} = -0.098$	βa1a = 0.164
$\beta_{322}^{22} = 1.012$	β 32 (2 '=-0.218	$\beta_{323}^{(2)}=5.280$	$\beta_{33}i^{2}=1.749$
$\beta_{332}^{(2)}=3.421$	$\beta_{333}^{23} = 19.705$		

Obviously β in β in β in β = β β in β = β in β = -12.596.

(2) β in β = β and β = β and β = β and β in with orthogonal design method.

REFERENCE

[1] Guo Dawi, Multilevel fuzzy linear weighted analysis method, Fuzzy mathematics, 2(1986)32-41.