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Abstract

In this paper, basing on Weber' s integrals for Archimedean t-conorms | -de-
composable measures [ 5], integrals of set-valued functions for Archimedean t-
conorms | -decomposable measures are established. Some results similar to Au-
mann’ s set-valued integrals are given. These include convexity, closedness, con-
vergence theorems, ete. They are the generalization of Aumann’s.
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1. Introduction

It is well known that set-valued functions have been used repeatedly in Eco-
nomics [3], integrals of set-valued functions have been studied by Aumann[1],
Debreu[ 2], and others. But they are all based on classical Lebesgue integrals. We-
ber [5]had introduced a kind of new integral for Archimedean t-conorms. (in
short, | -integral) which is an extension of Lebesgue integrals and show much
useful in fuzzy sets and statistics [6].

The paper’ s purpose is to extend the integrand of | -integrals from point-vai-
ued functions to set-valued functions, and build up a theory of | -integrals of set-
valued functions, s.t. the | -integral of a point-valued function becomes special.
Since | -integral is an extension of Lebesgue integrals, the paper’ s results are the
generalization of Aumann’s.

In the paper. following concepts and notations will be used. (X, ' ) will de-
note a measurable space, | is always a Archimedean t-conorm, g is the additive

generator, m is a | -decomposable measure.J' f1 m is the resulting integral. the
A

triplet (X, , m) will still be a complete | -measure space. I denotes [0, 1]. P,
(D is the power set of I, which not including {@}. A set-valued function is a map-
ping F:X—P, @) . F is said to be measurable iff GrF={ (x, r) : r€F (x) } is belong
to = @Borel (D. In the rest parts, the concepts undefined are all accepted from
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Weber’ s [5].
2. Detinitons and properties of | -integrals of set-valued functions.

In this section, | -integrals of set-valued functions will be defined by the simi-
lar way to Aumann’s, then its properties are shown, These related to “convexity,
closedess, montonicty*.

2. 1. Definition. Let F be a set-valued function. The integral of F over A €
-« is defined as

.LFJ_m —{J'AFJ_m: (€S (®) )

Where S (F) is the family of m-a. e. measurable selections of F. F is said to be
integrable on A ifJ. Flms#q
A

2. 2. Lemma. For {R,})CP, (1), if we define ;1&-8(_” (tle.) =g~

{Elrt:r.ERk, k=>1)}, then.[ F_| m can be divided into two cases:
ko A
(A) : Except for (NSP) with m (A)==1, then

Flm=g—! (J. Fd@'m))
A
(P) For (NSP) with m (A) =1, X is assumed to be m-achievable, then

Flmmg? (EJ' Fd (g*m) = I Film
A k=b 4,.N4 [T

A.nA
Wheref Fd (g *m) is the integral of Aumann’s sense.
A

2. 3. Proposition. If F is a measurable set-valued function, then F is inte-
grable on A.

Without any loss of generality, let the integral be over X, and ‘I ® is insteal

X
by - J' .
. A set-valued function F is said to be closed-valued (resp.. convex-valued), if
F (x) is olosed (resp., convex) for x€ X m-a.e. We use coF to denote the convex

hull function of F. Next propositons is about convexity.
2. 4. Proposition. Let F be a measurable set-valued function. Then

) m is atomless = I F 1 m is convex;

() F is convex-valued= J. F 1 m is convex. ,
2. 5. Proposition. Let F be a measurable set-valued function. Then
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I coF_Lm=ooJ' Flm.

The above two propositions are related to convexity, then the next result is
about closedness.
2. 6. Proposition. Let F be a measurable set-valued function with the assump-

tion for case (S): there exists ¢ s.t. F(x) <g(x) m-a.e., I ol m <1 or case

(NSP). Z; (8+m) (A,) <oo. Then

F is closed-valued :I Fl m is closed.

2. 7. Corollary. Let F be a measurable interval-valued function with the as-
sumption in proposition 3.7 {.e. F(x) =[f (x),f* (x) ]. Then

@ . rresm®

(il)J' F_Lm-[J. f~1m, J. f*m]

2. 8. Defintion. Let R;,and R, be two subset of I. Then R, <R, iff

(i) For each x,€R;, there exists y,€R,, s.t. x,K¥.;

(i) For each y,€R; there exists y.€ER; 5. t. X, Y.

Obviously, x, y€ [0, 1], x<Cy is a special case of this definition.

2. 8. Proposition. Let F; and F, be two measurable set-valued functions

I Fi<F,G.e. F,x)<F,;(x) for x€X m-a.e.), thenI F,_l_mQI Folm.

3. Convergence theorems.

In this section. Patous lemmas, Lebesgue dominated convergence theorem.
monotone convergence theorem are shown for the sequence of _| -integrals of set-
valued functions, we begin with the concept of convergence of a sequenee of ele-
ments in P ().

3. 1. Definition. Let {R.}be a sequence of subsets of I. Define

Limsup R,= {x: x'..l‘gg X, LE€ER, =1}

Liminf R, == {x: x=limx,, x,€R,n=>1))

If Limsup R,=Liminf R,=R, we say that {R,} converges to R, simply writ-
ten by Lim R,==R or R,~—~R :

3. 2. Note. Let {F,} be a sequence of set-valued functions. By the usual
pointwise (m-a.e) way , we can define Limsup F,, Liminf F,and Lim F,.’

3. 3. Theorem. (Fatous lemmas) Let {F,} be a sequence of measurable set-
valued function with the assumpsion for case (S): there exists . s.t. F. <o >

l)..[ ¢l m<1, or case (NSP): § ®8°m) (A,) <o, resp. Then
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o LimsupJ. F,._LmCJ' Limsup F,1 m;

(ii)J. Liminf F,_I_mCLimian F,|lm.

3. 4. Theorem. Lebesgue convergence theorem) Let the same conditions in
theorem 3. 3 be given. If F,—~F, then

I Fn_Lm-J. Flm

3. 5. Theorem. (Monotone convergence theorem) Let the same conditions in
theorom 3. 3 be given. If Fn # F, then

J' Fnlm }.r Flm
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