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Abstract: This paper gives a counterexample that the union
of two negative sets is not a negative set for signed fuzzy
measure, showing that the proof of theorem 2 in [3] is not wvalid.
Furthermore, we provide a proof for the Hahn decomposition
theorem when the space X is countable or the sicned fuzzy

measure possess the property (d).
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In{2].BJiao introducted a definition of signed fuzzy measure
and proved a Hahn decomposition theorem for a finite signed fuzzy
measure. Butsome fuzzy measures in the sense of [4—8] are not
signed fuzzy measures in the sense of [2] and a counterexémple is
given in [3). Therefore, X.Liu introduced another definition of signed
fuzzy measure as follows [3].

Definition 1. Let (X. %) be a measurable space [1]. A set

function pw: F>RU{Z o2} is called a sigcned fuzzy measure if

satisfies
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(1) 12 )=0;
(2) I ACA.C--CA,C--, {A,}CF then 1 (U A)= lmy (A),
(3 I ADA:D--DAD-, {A}CF, and || (A)l<+, n>1,
then L (NLA)= HB U (A.):
(4) If A, B€¥% ANB= g, then

(@) A0, u@®>0, PAN L@B>0 ==>p (AUB)> 1L
(AN u (B):

() @AKo, B0 wAA R (B)KO ==>p (AUB)< 1
(AXA p (B):

(©) pA>0, B0, ==>pA)>u (AUB_),> 1 (B).

In the following, we always suppose that | is a signed
fuzzy measure in the sense of Definition 1.

It follows easily from (@) and (b) that if A, € %, p (A)
>0 (resp. W (A,)<O0 ), n>1 and there exists an n, such that
(As. )>0  (resp.it (A, )<0), then p (UZAD> V Zip (A)>0 (resp.i
(UinAD <A (Ag)<0 ).

b is said to be possessing property (d), if there exists a
(finite or countable) sequence of sets {H,} in # such that the
following conditions are satisfied

(i) ¥n>1,u (E)=0 whenever E€# ECH,;
(i) © (ULH.)>0,
then [ (UwrA)>0 whenever T is an arbitrary index set , t€ T,
A€F  with (i) and U.erAi€F
Obviously, both any fuzzy measure [4—8] and any signed
measure [1] are signed fuzzy measure possessing property (d).
The {following proposition, which is similar to the property

(d), play an important role in the proof of the Hahn decomposition



theorem for signed fuzzy measure.

Proposition 1. If there exists a (finite or countable) sequence
of sets {H.} in ¥ such that the following conditions are satisfied
(i) V.>»1u(E)=0 whenever E€% ECH.; |

(i) L (U=H)>0  (resp. <0),
then p (U %A)>0 (resp. << 0)  whenever a (finite or countable)
seqquence of sets {A.} in & with (1.
Proof. We only prove this proposition for “>0” , the rest
may he proved in a similar way.
Suppose that {H.}C # is a ({inite or countable) sequence
of sets with (i) and (ii). If there exists a (finite or countable)
sequence of sets {A,} in ¢ with (i) such that p (U2A)N<0 |, let
H=U =A, E=H-U®H. n> L. Evidently, H, E, Ee  are
pa‘irwise‘ disjoint and by (i). p (E.)=0, n>1. Hence, we have
t(UsmeH)=1 (H. U U E)<0 ™ ,
On the other hand, let Ay=UZIH., F.=A,—UIJA, n>1  Obviously,
A, F, Fur are pairwise disjoint and p (F,)=0, n> 1. Noting
that L (A.)>0, We have

L (USmwAd)=1 (AU ULiF2)>0
which is a contradiction with (*) and so, for an arbitrary (finite
or countable) sequence of sets {A,} in ¥ with (i), p (UmiA)>0.

The concepts of positive set and negative sets for signed
fuzzy measure are exaxctly the same in form as the ones for
classicial signed measure [1].

Definition 2. Let EC X. E is called a positive set (with
respect to [ ) if, for every FE€ F FNEEZ u ENFH>0 ;
Similarly E is called a negative set (with respect to W ) if, for



every FE€EF | FNE£ZF pwENP<O.

The empty set @ is both positive set and negative set in
this sense, and every measurable subset of a positive set (resp.
negative set) is also a positive set (resp. negative set).

Proposition 2. If A is a positive set (résp. negative set)
and W (A)=0, then for every E€Z, ECA, p (E)=0.

Proof. We only prove this proposition for positive set, the
rest may be proved in a similar way.

Let A be a positive set and [ (A)=0. If there exists a
measurable set ECA such that W (E)>0, since A is a positive set,
H(A—E)>0. By Definition 1(a), we get

W A=u (A-E)UE)> n (A-E)\V 1 (E)>0
This is a contradiction with g (A)=0., and iherefore. for every
Ec ¥ ECA, n (E)=0.

For every classical signed measure, if both A, and A, are
negative sets, then so is A;U A.. But, for a sigcned fuzzy measure,
this conclusion is not true, as we can see in the following
counterexample.

Counterexample. Let X={abcd}, F be the power set of
X, u (e )=p ({bh=p ({dD=0, p ((bd}=1 and for the rest sets
A€ F, u (A)=-1. We can verify that @ is a siened fuzzy
measure and both {a,b} and {cd} are necative sets, But {ab}U
{cd}=X is not a negative set since {bd} in X is a positive set,

If let p’(@ )=u ({bh=u "({d)=0, u ‘({b, d)=-1 and
for the rest sets A< F u "(A)=1, then P’ is also a sicned fuzzy
measure and both {ab} and {cd} are positive sets, but {a.b}U {cd}

=X is not a positive set since {bd} in X is a necative set. This
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show that the union of two positive sets is also not a positive set
for signed fuzzy measure.

If there exist two sets A and B with ANB=d , AUB=X,
such that A is a positive set and B is a negative set with respect
to |t , then the sets A and B are said to be a Hahn
decomposition of X (with respect té ).

In [3], the Hahn decomposition of X with respect to a
signed fuzzy measure is discussed and Theorem 2. is given. But,
in the proof of Theorem 2. the wronz conclusion (that 1is, the
union of negative sets is a negative set ) is used, and therefore,

the proof is mistaken. Naturally, one want to ask whether there

still exists the Hahn decomposition of X with repect to a signed
fuzzy measure 7 In the {followinz, we give some results on this
problem.

Firstly, from Counterexample we {find that there still exists
the Hahn decomposition although the union of negative sets is not
a negative set. Generally, we have the following theorem.

Theorem 1. Let X be a countable set, # be the power
set of X and p be a signed fuzzy measure on (X, ¢ )then there
exists a Hahn decomposition of X with respect to .

Proof. Suppose X={x;, x:* }. Let

d={xp (>0, x€X},  A=U{x: x €}

B={x:pp (<0, x€X}, B=U{x: x, €3}

B={xi:h ({xi})=0, x,€X}, C=U{x: x € €}.

If for arbitrary f{finite or countable x,€ % , u (U.x,)<O0,
then it is easy to see that BU C is a negative set, A is a

positive set and AN BUC)=¢g , AU BUC)=X. And the conclusion
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Tollows.

If there exists finite or countable x,€ %, such that u
(U :x:)>0. then by wusing Proposotion 1. AUC is a positive set, B
is a negative set and AUON B=g , (AUCU B=X. And the
proof is completed

Secondly, in order to discuss the Hahn decomposition on
general measurable space (X, %) we need to add some weak
conditions to signed fuzzy measure and need the following lemmas.

Lemma 1.let | be a signed fuzzy measure on (X,%)

and it satisfy

(1) —o<p A)<+o, VACH;

@ E€F. ln@®I+o ==> |u@)<+o, ¥ FEF, FCE.
If A7 and u (A)<O, then there exists a negative set B€ ¥ such
that BCA and p B)< p (A).

Proof. See lemma 1. in [3] or refer to the proof of
‘Theorem 2.

Lemma 2. If there exists a (finite or countable) sequence
of disjoint negative sets {N,} in &, such that X-—-U .,N, is a
positive set, then there exists a Hahn decomposition of X when
one of the following conditions is satisfied.

(3) X is a countable set;
(4) p is a signed fuzzy measure possessing property (d).

Proof. Suppose that {N,}J& & are finite or countable
disjoint negative sets such that X—U,N, is a positive set, Let
A={H: HE%, HCN, and p H)=0}, K,=U{H: HE A}, n>1.

If for arbitrary H.€ 4, n>1, p (U.H)<O, let B=U.N,,

A=X-B, then it is easy to see that B is a negative set, A is a
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positive set and the conclusion follows.

If there exists H, €4, n>1, such that p (U.H,)>0, let

B=U.N.—U.K,, A=X-B=X—-U.N.)U U.K,

then B is a necative set and A is a positive set.

In fact, firstly for E€ ¥, EB€ ¥, by U.K,=U.N:—B, we
get

E(U.K)=E(U.N.))-EB¢F ,

EB=E(U.N.,)-E(U.K.;)=U.EN.(E(U,K,))
(where A° denotes the complement of A). Denote F,=EN,(E(U.K.).
It is clear that F,CN,F,€%n>1 Noting that N, is a negative set,
we have U (F;)<O0, n>1. If there exists some positive n, such that
i (F,. )<0, then p (EB)=p (U.F.)<0; if p (F,)=0, n>1, noting the
structure of K, and B, then F,=¢ , n>1, and so u (EB)=u (U.F.)
= (@ )=0. Therefore, B is a negative set.

Next, for E€F and EA€ ¥, EA=EX-U.N;)U E(U .K,).
Denote F=E(X—U,N,), then p (F)>0 since X—U,N, is a positive
set. By EA€ # and F€ % we get E(U .K,)=U EK;€ %, and
further, (U.EK)NN,=EK,€¥%, n>1.

(i) Suppose that X is countable, then so is EK,, n> 1. Thus
there exists a (finite or countable) sequence of sets {H,} in <
such that EK,CU;H,;, n>1l It follows from Proposition 2. that

EK.=U.EK,H;, n>1 and p (EK.H,)=0, i>1.
If p @F)>0, since u (U.H:)>0, by ‘using Proposition 1. we
have
b EUK)=u (U.EK)=p (U.UEK,H,)>0
and so Y (EA)=p FUE(U.K,)>0; if u (F)=0, then we get W (EA)
=p (FUE(U.K.))>0 from Propsition 1. immediately. Therefore, A
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is a positive set. This completes the proof of the lemma under the
condition (3).

(ii) Suppose that U iIs a signed fuzzy measure possessing
property (d). Since for every n.>» 1, EK, is the union of certain
sets in «, and u (U,H.)>0, if u (F)>0, applying the property (d),
we have n (E(U.K.\)>0 and p (EA)=p FUEU.K)>0; if p )
=0, we get W (EA)=p (FU E(U .K.))> 0 from the property (d)
immediately. Therefore, A is a positive set. This completes the
| proof of the lemma under the condition (4).

Theorem 2. Let U be a signed fuzzy measure on (X, %)
with the conditions (1) and (2) mentioned in Lemma 1., then there
exists a Hahn decomposition of X when one of the conditions (3)
and (4) mentioned in Lemma 2. is satisfied.

Proof. If for every E€ %, pw (E)>0, then p is a fuzzy
measure. We can take A=X, B=g , and the assertion follows.

If there  exists EC€Z such that p (E)<O, let & ,=inf{p
(EYE< #} and choose E, € # that satisfies p (E)< max(¥ & ,—1),
thend <0 and p (E)<O. By Lemma 1., there exists a negative set
N,€ %, N,CE, such that p (N)< p (E)<O.

If X—N; is a positive set, then the assertion follows from
Lemma 2. Otherwise, there exists E€ #, ECX—N, such that p (E)
<0. Let S=inf{p (E)EC€ ¥, EC X—N,} and choose E.€ ¥, E,C
X~—N,; that satisfies p (E;)<<max(}$ &.,—1), then &.<0 and p (E)<O.
By Lemma 1., there exists a negative set N,€ # N,CE, such that
b (N < W (E-)<O.

If X—N,U N.) is a positive set, then the assertion follows

from Lemma 2. Otherwise, we repeat the above processes.
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Inductively, we have following two cases
(1) Either there exists some positive intezcer n, and a finite
sequence of .disjoint negative sets N,-- , N, in %, such that
X—-UkN,; is a positive set.
(2) Or for arbitrary n>1, X—ULN: is not a positive set.
‘In the former case, the assertion follows from Lemma 2.
immediately. |
In the latter case, we obtain a sequence of real numbers

{8 .} and a sequence of disjoint negative sets {N,} in # that

satis{y
S .=inf{u (E): E€# ECX-UXN}<0, n>1
b (No)<max(¥ 6,,—1)<0, n>1 (**

Supposing X—U =N, is a positive set, then the assertion
follows from Lemma 2. |

Indeed, since N,, N,.:- are pairwise disjoint, U2.N;{ @ , and
since ,

=< (ULN)SKAL L (ND< B MN.)<0,  n>1
it follows from Definition 1 (3) that Um p (U 2,.N)=0, and then
Um |, (N.)=0. Hence, by (**), we have lim§,=0. On the other hand,
i ACX—UzuN,, then for arbitrary n>1, we have

ACX—-Ur4N;, uw(A)>d,—0.
and then p (A)> O, that is, X—U 2N, is a positive set. This

complete the proof of the theorem.
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