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Abstract: In this paper, fuzzy almost semicontinuons functions, a
new olass of functions, is introduced. Some Charaocteristic properties
of thie olass of the funotious is investigated. The ocomposition of
fuzzy almost semicontinuous functious and other function is studied.
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1 Introduoce

Zadeh in [1] introduced the concept of fuzzy set.Weaker forms of

continuity in fuzzy topological spaces have been studied in [2-12].

In this paper» we introduce a new class of functions, called fuzzy
almost semicontinuous functions,as a generalization of fuzzy almost
continuous functions and fuzzy semicontinuous functions. The
characters of fuzzy almost semi-continuous functions are investigated.
The property of fuzzy almost semioontinuous funotions and other
functions is studied .

For general terminologies and the concepts not explained here, we
refer to [2,8,12]. Some definitions and results which will be needed
are recalled here.

In this paper X and Y mean fuzzy topological spaces.

Definition 1.1[2] Let A be a fuzzy set in a fuzzy topological space

X A is called
1) fuzzy semi-open if there is a open set B such that Bs<CA<CCLB.
Gii) fuzzy semiclosed if there is a closed set B such that intB<A
<B.
(iii) fuzzy regular open if int(cl(A))=A.
(iv) fuzzy regular olosed if ol(int(A))=A.

Theorem 1.2C131] For a fuzzy set A in a fuzzy space X, the

following are equivalent .

(i) A is a fuzzy semiclosed set.

(ii) A’is a fuzzy semiopen set.

(iii) int(ol (M)A

(iv) clCint(A’))>A’

Definition 1.8 [3] Let A be a fuzzy set in X and define the
following sets:

s—clA = (1 { BIA < B, B is fuzzy semiclosed)
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s-intA = U{ B!B <A, B is fuzzy semiopen)

A Is a fuzzy semi-opeon set iff A=s-intA, A is a fuzzy seml~oloeed
set iff A = s-olA
Definition 1.4 [181 A fuzzy set A on a fuzzy topological space X is
said to be 8 -open 1f for each fuzzy point Xaq € Asthere exist a

regular open fuzzy set B in X, such that X g € B<A.

It follows the frout definition that a 0 -open fuzzy set is a
union of fuzzy regular open sets and a fuzzy regular open set is
a O -open fuzzy set.

Definition 1.5 [181 A fuzzy point x4, In a fuzzy topological

space X is said to be a 8 -adherent point of a fuzzy set A in X if
every regular open quasi-neighbourhood of x, 1is quasi-coincident
with A.

The union of all O -adherent fuzzy points of a fuzzy set A in a
fuzzy topological space X is called the 8 -closure of A and is
denoted by & -ol(A). If A=8 -cl(A) then A is called fuzzy O -closed.

Lemma 1.8 [18] The 8 -olosure of a fuzzy set in a fuzzy topologiocal
space is O -closed.

Definition 1.7 [5] Let A be a fuzzy set in a fuzzy topological
space X, the fuzzy semi 6 —closure of A, denoted by cls-90 (A) is
defined as {x €X | for every fuzzy semi-open semi gnasi—-neighbourhood

Bof xq, s—oIB Q A}, and A is fuzzy semi B -closed iff A = cls-08 (A)
Definition 1.8 Let f+X—Y be a function between two fuzzy
topological spaces, then f Is called

(i) fuzzy semicontinuous funotion €21 iff f_l(A) is a fuzzy
semi-open set of X for each fuzzy open set A in Y.

(ii) fuzzy almost continuous function [2] iff f—l(A) is a fuzzy
open set of X for each regular open set A in Y.

(iii) fuzzy weakly ocontinuous function [2] iff £ 1(A)<intt™!
(olA) for eaoh open set A in Y.

(iv)a fuzzy weakly semi-continuous function [10] iff f-I(A)<:s—int
t71  (s-clA) for each open set A in VY.

(v) a fuzzy R-map [14] iff ™A is a fuzzy regular open set
of X for eaoch fuzzy regular open set A in Y '

(vi) a fuzzy semi irresolute function [5] iff t~1¢n is a fuzzy
semi-open of X for each fuzzy seml! O -open set A in Y.

(vii) a fuzzy irresolute funotion [8] iff f—I(A) is fuzzy semi
-open set of X for each fuzzy semi-open set A in Y.
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(viii) a fuzzy oompletely irresolute fuuotiog £113 it 1A is a
fuzzy regular open set of X for each fuzzy semi~open set A in Y.

(x) a fuzzy completely weakly irresolute function Iff f"l(A) is
a regular open set of X for each semi-0 open set A in Y.

Definition 1.8 [2] A fuzzy topological space ( X, 8) is called a
fuzzy semiregular space iff the collection of all fuzzy regular open
sets of X form a base for fuzzy topology &.

A fuzzy topological space X is called a fuzzy regular space iff each
fuzzy open sets A of X is a union of fuzzy open sets Ai of X such
that clA 1< A,

Definition 1.10 [18]1 A fuzzy topological space X is normal if for
every olosed fuzzy set C in X and fuzzy open set A in X ocontaining C»

there exists a fuzzy open set B in X such that C<<B<<CLB<A.

2 Fuzzy almost semicontinuous functions
Definition 2.1 A fuzzy function f:X—Y from a fuzzy topological
space X to another fuzzy topological space Y is said to be a fuzzy

almost semioontinuous funotion if f l(A) is a fuzzy semi-open set of
X for each fuzzy regular open set A in Y.
Theorem 2.2 If f:X—Y is a fuzzy almost continuous function » then f
is a fuzzy almost semicontinuous .
Proof: obvious.
The oonverse of theorem 2.2 need not be true whnoh is shown by the
following Example 2.83.
Example 2.3 Let X={a.b}.Y={a,b.,c} and f:X—Y be defined as f(a)=a.,
t(b)=bs, let us define fuzzy sets A in X and B in Y as follows, A(a)
=0.3 »A(b)=0.4, B(a)=0.3, B(b)=0.4, B(c)=0.5, Then (O.A.lx} is a fuzzy

topology on X and (O.B:ly} is a fuzzy topology on Y. It can be

verified that f is fuzzy almost semicontinous, but the inverse image
of a fuzzy regular open set B is not a fuzzy open set in X.

Theorem 2.4 If ft:x—Y is a fuzzy almost semicontinuous function from
a fuzzy topological space X to a fuzzy semiregular space » then f is
almost oontinous.

Proof: The proof is straightforward from the definition 1.9 and 2.1 .
Theorem 2.5 Fuzzy weakly semicontinuous functions and fuzzy
almost semicontinuous functions is independent notions.
This is shown by Example 2.8 and Example 2.7 .
Example 2.6 Refer to Example 2.4 f is a fuzzy almost

semiocontinuous funotion. then ™ 1(B)<s-intf 1(s-0l (B))=c-ints~! (B).
Thus f is not a fuzzy weakly semicontinuous function.
Examole 2.7 A fuzzv weaklv semicontinuous function need not be a
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fuzzy almost semioontinuous funotion.
Let X={asbsc} 6= {0,A»B»1} L = {0,D,1}, where A(a)=0.4, A(b)=0.2,
A(e)=0.1, B(a)=0.5, B(b)=0.5, B(ec)=0.5, D(a)=0.5, D(b)=0.5, D(e
)=0.8. Consider the identify function f:(X, 8)—>«(Y,L), simple

computations give D=t LDy <s-int 7 (s-cl(D))=s—int £ l(1)=1

Hence f is a fuzzy weakly semicoutinuous function, Also by easy

oomputations it follows that the inverse image of the regular open set

D is not semi-open in X. Thus f is not a fuzzy almost semicontinuous.

From [10] we know that fuzzy almost continuous function and fuzzy
weakly semicontinuous function are independent notions .Since a
fuzzy almost ocontinuous funotion is a fuzzy almost semicontinuous
funotion and a fuzzy almost semiocontinuous funotion need not be a
fuzzy weakly continuous function.

The following Example 2.8 shows that a fuzzy weakly continuous

funotion need not be a fuzzy almost semicontinuous function.

Example 2.8 Let X={asbso0}» & =(0,B,1} and T={0,A,1), where A(a)=0.3,

A(b)=0.1, A(c)=0.4, B(a)=0.6, B(b)=0.7, B(c)=0.5,» oconsider the
identity funotion f: (X, 8)—>(Y, T), simple oomputations give A=t~ 1)
<int £ 1(cl1-A)=int A’=B.

Hence f 1s a fuzzy weakly continuous function. Also by computations,
it follows that the inverse image of the regular open set A is not
semi-open, thus f is not a fuzzy almost semiocontinuous funotions, so
we obtain theorem 2.8.

Theorem 2.9 fuzzy weakly continuous functions and fuzzy almost
semicoutinuons function is indepent notons.

Theorem 2.10 If f:X—Y is a semicontinuons function, then f is a
fuzzy almost semi-continuous. '

Proof: Noting a open set is semi-open, a regular open set is open.
The inverse of this theorem need not be true is shown by Example 2.8.
Example 2.11 let X = {a» b, ¢} »8= (0, D, 1) and T= {0, A, B, 1)} »

where A (a) =0.4, A (b) =0.2, A (c) =0.1, B (a) =0.5, B (b) =0.5,
B (¢) =0.5, D (a) =0.8, D (b) =0.2, D (c) =0.2, Consider the
identity function f: (X, 8) — (X, T) , by computations it follows
that B is regular open set and A is not.

The inverse of each regular open set is semi-open. However, the
inverse of the open set A is not semi-open.therefore f is almost
semicontinuous.

Definition 2.12 A function f:X—Y from a fuzzy topological space X
to a fuzzy topological space Y is said to be fuzzy almost
semicontinuous at a fuzzy point Xq in X if for each regular open

set of Y containing f(x(x) there exists a fuzzy semi-open set B
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Containing x4 suoh that f (B)=A

Thaorem 2.18 let £:X—Y ba a fuzzy function. than the following
are equivalent.

(i) f is a fuzzy almost semicontinuous function

(ii) f is a fuzzy almost semicontinuous at each fuzzy point in X

Ciii) t71cA) is @ fuzzy semi-olosed set for each regular olosed
set A in Y

(vi) | f—l(A) is a fuzzy semi-closed set for each 0 -closed fuzzy
set A in Y.

(v) £-1(A) is a fuzzy semi-open set for each O -open fuzzy set
Ain Y.

(vi) int el (71Nt (5 -0L (A) )sfor all fuzzy sets A in Y
(vii) f (in toclA) € 8 -cl f(A) for all sets A in X.

(viii) £ 1A)<ol int £ 1(int ol(A)) for each open set A in X

(xi) £ lr>int o £ 1(cl int(A)) for each closed set A in Y .

Proof: (1) <=2> (11) It is easy from the definitions .

(i) <=2> (iii) Noting that t~laan=t~ 1’ tor any fuzzy set A
of Y, this is obvious.

(i) => (v) let A be a O -open fuzzy set in y, there exist fuzzy

regular open set Bi (1=], is an index set) such that A = 2 Bi

tel

Now £ 1car=¢"1¢ v B;) = U f‘l(ni) for eaoh B, (i=I). f‘l'(ni) ic a

-

i€l i€l
fuzzy semi-open set, so f'l(A) is a semi-open set.
(vi) <=2 (v) This is obvious being a camplement of each other.
Civ)= > (vi) Sinoe the 8 -oclosure of the fuzzy set A iny is O

—closed, £ 1(8-CL(A)) is a fuzzy semi-open set. Hence t (s -cLaa» >
int cl(f7 18 -CLA>int cl(f71(A)
(vi)=2>(vii) Let f(xg4) L 6-cl f(A)be a fuzzy point in Y, then x4

{f-l(ﬁ—oLf(A)). Since £ 1(8 -c1f(A))>int clf 1 (£(AI> int cl(A),
from (vi) 1t follows that x, int ol(A), which impiles that f(x )

f(int ol(A)). Henmoce f(int ol(A)IK & -olf(A).
(vii)=>vi It is easy proved.
(i) =2> (Viii) Since int cL(A) is a fuzzy regular open set when A

is any open set in Y » £ 1¢int ol(A)) is a fuzzy semi-open set, Hence
£ 1¢int o1(A)) <ol intt™1(int cl1(A)). Now A is fuzzy open set » so
int cl(A)>>int A = A . Hence f lcar<el intf !cint clca)).
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(Vii1)=>(1) Let A be any regular open set in Y » Thea A = int cl(A),
by (VIi1) ol Intt~1(iat o1(A)) = ol intt~1(A) >171(A), which shows

that t~1(A) Is a fuzzy semi-open set.
(111)¢=>(iX) It is analogioal to the proof of (i)<=>(viii)
Theorem 2.14 Every fuzzy R_map is a fuzzy almost semicontinuous
function k
proof: obvious
The converse of the above is not true by Example 2.3.

3. Composition of tuzzy almost semicontinuous funotions

Theorem 3.1 If f:X—Y is fuzzy almost semicontinuous function and g:

Y—==z is fuzzy R-map, then g o f + X—~Z is fuzzy almost semiocontinuous.
proof: The theorem follows from the definitions .

Theoram 3.2 If £:X—Y is fuzzy irresolute and g: Y—2Z ig fuzzy
almost semloontinuous, then g o f :X—~Z {s fuzzy almost semicontinuous.
proof: The theorem follows from the definitions.

Theorem 3.3 If £:X—=Y Is completely irresolute and g:Y—z is fuzzy
almost semicontinuous, then g o f: X—~z is R-map.

proof: let B be a fuzzy regular open set of 2z, the g‘l(B) is a fuzzy

semi-open set in y. Now f'l(g'l(B))=(g o ) 1B 1s a fuzzy regular
open set in X, since f Is a fuzzy ocompletely irresolute function.
Henoce the theorem oorreot.

Theoren 3.4. If f:X—Y is fuzzy almost semicontinuous and g:y—>z is
weakly completely irresolute, then g o f1 x>z is semi-irresoluta.

proof: obvious.
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