FUZZY STRONG PRE-SEMICONTINUITY

Ye Xiao-Hong

Department of Mathematics, Yanan University, Yanan, China

ABSTRACT

In this paper, we introduce and study the fuzzy strongly presemicontinuous mapping in fuzzy topological spaces.

Key words: Fuzzy topological spaces; fuzzy pre-semiopen sets; fuzzy preopen sets; fuzzy strongly pre-semicontinuous mappings.

1. PRELIMINARIES

In this paper, non-empty sets will be denoted by X, Y, etc. (X, δ) and (Y, τ) will denoted fuzzy topological spaces with the topology δ and τ respectively. A°, A⁻, A_o, A₋ and A' will denote respectively the interior, closure, semi-interior, semi-closure and complement of the fuzzy set A.

Definition 1.1^[2]. Let A be a fuzzy set of (X, δ) . Then A is called

- (1) a fuzzy pre-semiopen set of X iff $A \leq (A^{-})_{\circ}$;
- (2) a fuzzy pre-semiclosed set of X iff A≥(A°)_;

<u>Definition 1.2^(R): Let A be a fuzzy set of (X,8).</u> Then the union of all fuzzy pre-semiopen sets containing in A will be called the fuzzy pre-semi-interior of A and denoted A_{\triangle} . The intersection of all fuzzy pre-semiclosed sets containing A will be called the fuzzy pre-semi-closure of A and denoted A_{\triangle} .

2. FUZZY STRONGLY PRE-SEMICONTINUOUS MAPPINGS

<u>Definition</u> 2.1. Let $f:(X, \mathcal{S}) \to (Y, \tau)$ be a mapping. f is called a fuzzy strongly pre-semicontinuous mapping if $f^{-1}(B)$ is a fuzzy pre-semiopen set of X for each fuzzy preopen set B of Y.

Definition 2.2. Let $f:(X,\delta) \to (Y,\tau)$ be a mapping. f is said to be fuzzy strongly pre-semicontinuous at a fuzzy point p in X, if fuzzy preopen set B of Y and $f(p) \leq B$, there exists a fuzzy pre-semiopen set A of X such that $p \leq A$ and $f(A) \leq B$.

Theorem 2.3. Let $f: (X, S) \rightarrow (Y, \tau)$ be a mapping. Then the following are equivalent:

- (1) f is fuzzy strongly pre-semicontinuous.
- (2) $f^{-1}(B)$ is a fuzzy pre-semiclosed set of X for each fuzzy preclosed set B of Y.
 - (3) $f((A^\circ)_-) \leq (f(A))_{\sim}$ for each fuzzy set A of X.
 - (4) $((f^{-1}(B))^{\circ})_{-} \leqslant f^{-1}(B_{\sim})$ for each fuzzy set B of Y.
 - (5) $f^{-1}(B_{\Delta}) \leq ((f^{-1}(B))^{-})_{\circ}$ for each fuzzy set B of Y.

Theorem 2.4. Let $f:(X,\delta) \to (Y,\tau)$ be a mapping. Then f is fuzzy strongly pre-semicontinuous iff f is fuzzy srtongly pre-semicontinuous for each fuzzy point p in X.

Proof. Let f be fuzzy strongly pre-semicontinuous, p be a fuzzy point in X and B be a fuzzy preopen set of Y such that $f(P) \leq B$. Then $p \leq f^{-1}(B)$. Let $A=f^{-1}(B)$, then A is fuzzy pre-semiopen set of X, and so $f(A)=ff^{-1}(B) \leq B$. Thus f is fuzzy strongly pre-semicontinuous for each fuzzy point p in X.

Conversely, let B be a fuzzy preopen set of Y and p be a fuzzy point in $f^{-1}(B)$. Then $p \leqslant f^{-1}(B)$, i.e., $f(p) \leqslant B$. From hypothesis there is a fuzzy pre-semiopen set A of X such that $p \leqslant A$ and $f(A) \leqslant B$, hence

$$p \leq A \leq f^{-1}f(A) \leq f^{-1}(B)$$

and

$$p \leq A \leq (A^-)_{\circ} \leq ((f^{-1}(B))^-)_{\circ}$$

Since p is arbitrary and $f^{-1}(B)$ is the union of all fuzzy points in $f^{-1}(B)$,

$$f^{-1}(B) \leq ((f^{-1}(B))^{-})_{\circ}.$$

i.e., $f^{-1}(B)$ is a fuzzy pre-semiopen set of X. Thus f is fuzzy strongly

pre-semicontinuous.

Theorem 2.5. Let $f:(X,\delta) \to (Y,\tau)$ be one-to-one and onto, where X and Y are fuzzy spaces. f is a fuzzy strongly pre-semicontinuous mapping iff $(f(A))_{\Delta} \leq f((A^{-})_{\circ})$ for each fuzzy set A of X.

Theorem 2.6. Let X_1 , X_2 , Y_1 and Y_2 be fuzzy spaces such that X_1 is product related to X_2 . Then the product $f_1 \times f_2 : X_1 \times X_2 \rightarrow Y_1 \times Y_2$ of fuzzy strongly pre-semicontinuous mappings $f_1 : X_1 \rightarrow Y_1$ and $f_2 : X_2 \rightarrow Y_2$ is fuzzy strongly pre-semicontinuous.

Remark 2.7. For the mapping $f: X \rightarrow Y$ the following statements are valid:

f is fuzzy strongly pre-semicontinuous

=> f is fuzzy S₁-pre-semicontinuous[5]

=> f is fuzzy pre-semicontinuous[2]

=> f is fuzzy W-pre-semicontinuous[7].

None is reversible.

Proposition 2.8. Let $f: X \rightarrow Y$ be fuzzy strongly pre-semicontinuous and $g: Y \rightarrow Z$ be fuzzy almost precontinuous[3]. Then $g \circ f$ is fuzzy W-pre-semicontinuous.

Proposition 2.9. Let $f: X \rightarrow Y$ be fuzzy strongly pre-semicontinuous and $g: Y \rightarrow Z$ be fuzzy weakly S-irresolute[4]. Then gof is fuzzy S_1 -pre-semicontinuous.

REFERENCES

- [1] Bai Shi-Zhong, Fuzzy Sets and Systems, 52(1992) 345-351.
- [2] Bai Shi-Zhong, ICIS'92, 918-920.
- [3] Bai Shi-Zhong, BUSEFAL, 51(1992), 102-104.
- [4] Bai Shi-Zhong, BUSEFAL, 57(1993/1994), 4-6.
- [5] Bai Shi-Zhong, BUSEFAL, in press.
- [6] Pu Pao-Ming and Liu Ying-Ming, J.Math.Anal.Appl.76(1980)571-599.
- [7] Ye Xiao-Hong, BUSEFAL, 56(1993), 87-89.