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Abstract:
In this paper the concept of coincidence degree for fuzzy map-
pings and set-valued mappings is discussed. The results presented

in this paper are the improvement and generalization of relevant

results of [1],
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1. Introduction and preliminaries

In {1} the concept of coincidence degree has been introduced
and the existence problems of coincidence point for fuizy map—
pings and single-vaiued mappings have been studied by Chang Shih-
sen. Since the concept of coincidence degree for fuzzy mappings
is the unification and expansion of the concepts of fixed point
for set-valued mapping, coincidence point for mappings and fixed
degree for fuzzy mappings etc.(?,}]. Therefore the stuay about
the theory of coincidence degree for fuzzy magpings will certainly
havé an important influence on the development of the theory and
application of fuzzy mapping.

In this paper the concept of coincidence degree for fuzzy
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' mapping and set-valued mapping is discussed. The results pre-
sented in this paper are the improvement and generalization of
relevant results of (1].

For ease of relation we first introduce the following concepts:

Definition 1. Let X be a nonempty set, M a linear topological
Sspace, T: X—2M g set-valued mapping, i: M) a fuzzy mapping
(F(x) is aenoted by E, in the sequel), (M) a collection of all
fuwzy sets over M. The numberymea% Ec (y)€(o,1) i8 called to be the
r 4
coincidence degree of x for T.and F, and we denote it by
Dco'-n (x; T’ j‘?)'
Specially, when
max Fx(y)"Dcoin(X; T, F):T&'gﬁF&(U),

YeTy
we say that x is a coincidence point for T and F.

Definition 2. Let X be a topological space, M a linear topolog-
cal space. The fuzzy mapping F: X*3F(M) is called convex, if for
each x€ X the fuzzy set E, on M is a fuzzy convex set, i.e. fbr
any y,z€ M the following is true:
Fo(ty+(1-t)2)> min{f (y), & (2)}, Vte[o, 1].

F is called closed, if B (y)=F(x,y) is upper semi-continucus
(as a two element function on XxM).

In the sequel we denote by

(A= {xeM; A(x)zet} |, o€ of)

the o-cut set of A€ SF(M).
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2. Coincidence theorems for fuzzy mappings in locally convex

linear topological spaces

Theor‘em 1. Let X!;¢,‘ M a locally convex Hausdorff linear topolog-
ical space, T: X—2* a set-valued mapping, and Y=T(X)=zg( Tx a
compact cdnvex set of M. Suppose that ol(x): X—={r, 1], 0<r<|, is a
functional and F: ¥—H¥) a fuzzy mapping satisfying the follow-
ing conditions: |
(i) for each ue Y, the set |
xg,,u{ye Y; B (y)zo(x), ¥x ET"H}
is a nonempty set of Y;
(il) of Y-——ﬂ;(Y)_ is a convex closed fuzzy mapping which is de-
fined by
. maxi (y)  if ye N(F (y))
Fy (y)={15 k' ZETa
otherwise;
i) Ay (y)s «(x), Vxe X, yel.
Then there exists xy4€X such that
Depin(Xe; T, F)=cx(xy)

and xy is a coinciaence point for T and F.

Proof. We define a set-valued mapping as follows:
Y .
First, we prove that for each u €Y, P(u) is a nonempty compact
convex set of Y. A
In fact, it follows from condition (i) that P(u)x @ . Suppose

that {yé}PeJC P(u) (where J is an inuex set) which converges to
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¥,€ Y, then for each ze¢ ™, Fp(y)>oz). Since F is a closed
fuzzy mapping,
F(d)=z Tim B ()= lim ez, ( %) maxo(z) > r>0.
It follows from definition of F,(y) that y ¢ P(u). This shows
that P(u) is a closed set of Y, and hence it is compact.
wet y, , y, € P(u), te(0,1), since F is a convex fuzzy mapping,
we have
Fy(ty +(1-8)x )z min{K (5 ), F (5}
—mlntma:g E(y ), max E (3 )}

ZeT
>min {zmagf ol(z), max d(z i

ZET
=max, 0((Z)> r=>0.
ZET
ie. ty +(1-t)y e N, (& )o“z)=P(u) Hence P(u) is a nonempty com-
zeThu
pact convex set.
Next we prove the graph of P
Graph(P)= M{(u,y): y e p(w)]
is a closed set of MxM. Since F is a closed fuzzy mapping, the set
Qz{(u.y)z B(y)=r, u, y‘eY}
is a closed set of YXY. We shall prove that (2=Graph(P).
Suppose that (u,y) € Graph(P), Then u€ ¥, ye&P(u), ye {;_'(E'Z )o((z)
ZeT u
This implies that
F,(y)= max F(y)=
“ ZeTh Z€T
i.e. (u,y)€2

Conversely, if (u,y)€ £2 then we have ﬁ‘(y)z r>0, this is im-

ma3< ofz) =

plies that y&P(u), i.e. (u,y)€ Graph(P). We have thus shown that
the yraph(P) is a closed set of YXY. By Ky Fan's theorem (cf. (4])
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there exists u, & Y, such that u,&P(uy), hence there exists x,eX
such that xeeT"u,. Since u,eP(u,), for each z&T uy, we have

F(ug )»o(z). Hence F&(u,)za@(xx). so that

: . 1
gxgrl;*%(y)z E;(‘(u*),a(x(x,) (1)
By condition (iii) and (1) we have max F,(*(y)=o((x*) i.e.
YeETxy
DCO?ﬂ(x*; T! F)=u(x§)o (2)

and B
gax Byly)=ok(xg )=y (xgs T, F).
Thus x, is a coincidence point for T and F. This completes the

proof of theorem.

Definition 3. Suppose that X is a topological space, (Y,d) is a
metric space, S: X——>2Yvis. a set-valued mapping and A is any sub-
set of Y. Let
Ag= U{xe ¥; d(x,a)<&, aeA}.

Suppose that {Aq} igeény sequence of subset in Y. A is a subset
of Y. We call that {As} converges to A, if

(1) for each a&A, there are a,€ Ap, n=1 ,2,";,such, that a—»e;

(it) for every £>0, there is a N>0, such that n>N implies that
AnC Ag

S: X——-*»ZY is called to be continuous at x, if S(x,)—S(x) as
Xp—=x. If S is continuous at every point of X, then S is called

to be continuous on X.

Theorem 2. Let X be a nonempty compact convex set of a locally

convex Hausdorfii linear topological space, M a metric space,
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T: X——'-Zma continuous mapping (we write Y(X)), F: X—-g(Y) a
fuzzy mapping and «: X—=(0,1] a.continuous functional. Suppose
that F is a fuzzy mapping which is defined by
F: Y—=SAX), 'ﬁy(x).=Fz(Y),
and satisfying the following condition:
.(i) for each x €X, the set
N {zeX; f&(z)) x(x), yeTx}

JETX
is a nonempty closed convex set;

(i)
(i) Fy(x)sot(x), yxeX, yyel.

Then there exists x € X such that

f" is a closed fuzzy mapping;

Dco“n(x* ; T, F)--OL(X*)v

and x, is a coincidence point of T and F.

Proof. we define a set-valued mapping as follows:
S: X—»ZX S(x)= ﬂ{zeX: _'I-:ly(z)za(x), yeTx}.
Then S(x) is a nonemptydce]-l.;f)sed convex set. Since X is compact,
therefore S(x) is a nonempty compact convex set.
We now prove the graph of S

Graph(S):x%({(x,y); yéS(x)}CXxX
is a closed set. In fact, suppose that {(xﬁ A )}56.7 is any net
of graph(S)(where J is an index set) and (xg, A ) =%, ¥, )-
Since ype S(x@), hence for each yeTxp, we have

’F}(ypuo«x@,).

Since I and « are continuous and F is a closed fuzzy mapping, it
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follows that

?y(yo ) zX(x, ), vye Ix, .
Hence (x,,y, )¢ graph(S). By Ky Fan's theorem [4] there exists
xy & X such that x, € S(xc). Thus for each ye Tx,, we have 'f‘:y(x*)
zd(x, ), i.e.

E(y)zalxg), Vyye Txg.

Therefore we have

a > . | (3)
JgT:“ %(Y)/O((X*)
it follows from condition ({{j) and (3) that
: ; T, = = i .
Boin (Xx F)=o((xy) nax B 1)
Hence x4 is a coincidence point of T and F. This completes the

proof.

Theorem 3. Let X be a nonempty compact convex set of a locally
convex Hausdorff linear topological space, M a 1locally convex
metrizable linear topological space. Suppose that T: X——»Z"4 is
continuous, Y=T(X) a compact convex set, o: ¥—{0,1] a continuous
functional and F: X—9(Y) is a closed convex fuzzy mapping sat-
isfying conaition: for each ueyY, the set

zg't{er: B (y)ze(z), zeT"u}ﬂF¢ . (4)

Then there exists xy€X such that

DCoin (x*;- T, F)ZO((X;K ).

Proof. We define a set-valued mapping as follows:

P: Y——*ZY P(u)= ﬂ{{ye‘- Y; (y)= A(2), z26 T-'u] (5)
ZETy
By above conditions, we easily obtain that P(u) is a nonempty
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closed convex set, thus P(u) is a nonempty compactA convex set and
the set |
Graph(P)= U{(u,y) y €P(u)}
is a closed set of YxY. By Ky Fan's theorem there exists u,¢ Y,
such that uy€ P(ux). Since T(X)=Y, there exists x, € X, such that
i*e ’l‘"u*(or Uy e Txy). Since u,& P(ux), for each ze T"u* we have
B (ux)>ol(z), therefore E(uy)>(xx). Then
Jr;éa}rxixe(y) Felux)>ol(xx),
Droin (Xx3 T, F)=od(xy).
This completes the proof.
Corolléry. ‘Under the conditions of the theorem 3, if we take that

Ux)= &na%c Fe(u), then x, is a coincidence point for T and F.
€

Theorem 4. Let X be a nonempty convex set of a locally convex
Hausdorff linear topological space, M a locally convex Hausdorff
linear topological space, T: x—2M a set-valued mapping, Y=T(X)
a compact convex set,ol: X—[r,1), re€ (0,1] , & lower semi-con-
tinuous functional and F: X—=#(¥) a closed convex fuzzy mapping
satisfying the folldﬁ.ng conditions:

(1) for each u€é Y the set

A *{yéY B (y)=ct(z), zéT"u}“«'—¢

(1) ng',_x Fz(y) is a upper semi-continuous on YxY;

(iii ) B y)sol{x), YxeX, yyéeY

Then there exists x,6X, such that
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DCO“\ (X* H T, F)'—'-‘O((xx).

Proof. We define a fuzzy mapping as follows:
F. ’ if ye F,
ax % (y) y eri("z)o((z)

otherwise.

’

F: YY), E (y)= {o

We shall now prove that ¥ 1s a closed convex fuzzy mapping. In
fact, suppose that Y » %€ f\" (Fy )«(z), then for each ze 'I‘"u, te
(0,1}, we have 2T

By (ty +(1-t)y, )= min{Fz(y, ), Fi()@)};d(z)?r:-o,
hence ty +(1-t)y, ¢ (\ (Fz)yz) , and thus
F, (ty +(1- -t)y, )—un;a_'._x F(ty, +(1-t)y, )
> max (m,in{k‘z (y, ‘;. Fp (y, )} )= min {'E‘u(y,- )i Faly, )} \
This shows tnat ¥ is a convex fuzzy mapping.
Next we prove that for each «€(0,1] the set
() Rinzx, v, yer] (6)

is a closed set of YxY. In fact, by definition of ':“", we have that

{(w,3): Fylyde, u,ye tj={(u,y): maxE(y)=«, ye 0, (Fz Mz v € Y]

{(u.y) By F,(y)=ol, u,ye Y}n{(u,y) ye r](F Wez) 0 uéY}
Since i%a'rx rz(y) is upper semi-continuous, hence the set
{(u,y).l zmea._;g'“rz(y);o&, u, er} .
is a closed set of YXY. Since F,(y)-o(z) is upper semi-continu-
ous, the set
(CHF ve P2z . uey|
is a closed set. Therefore +the set {(u,y)é YxY: ’Ev‘u(y)zu} is a

closed set, this implies that F is a closed fuzzy mapping, thus
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all conditions oftheorem 1 are satisfied, and there exists a
point x,.€ X such that
Dcoin(xs-3 T, F)'—'—'O((I*).

The theorem follows.

Definition 4. Suppos X, ¥ are topological spaces, S, T: X—2'are
set-valued mappings. We call there is the coincidence between S

and T, if there exists (x., y, ) € XxY such that y, € S(x, )XT(x,).

Theorem 5. Let X be a nonempty set, M a locally convex Hausdorff
linear topological space. Let T: X——-ZM be a set-valued mapping,
and Y=T(X) a compact convex set of M, P: X—=2' a set-valued map-
ping satisfying the following conditions:

(1) for each ue Y the set Qi(z) is a nonempty closed convex
set of Y;

(ii) the set U{(u,y): yé M P(z), ze T u}l 'is a closed set of

uey ZETy

YXY.

Then there is the coincidence between P and T.

Proof. We take that ((x)=1, yxeX, F: ¥*Y), x———’)(M and
F: ¥=F(Y), as follows:

~ 1, if ye My P(z);
Fu(y)= ZeThy
o, otherwise.

Then all conditions of theorem 1 are satisfied. By theorem 1

there exists u, € Y, xg¢€ T-'u, such that

max & (y)= F,(*(u, )= ol(xg )=1.
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Hence Eg(u,)=1, i.e. y € P(x,), so that use P(x, )N T(x«). Then
there is the coincidence between T and P. This completes the
proof.

In the following,wé shall discuss the relationship between the

coincidence and coincidence point in special conditions.

Theorem 6. Let X be a nonemptj set, Y a topologigal ~Space,
o : X—(0,1], a functional, F: ¥—%A(Y) a fuzzy mapping, and
T:.X—*iﬁ‘é,set-valued mapping satisfying the following conditions:

(i) for each x€ X, (B )o((z)-.';¢.

(ii) for each x€X, Tx is a compact set and F is a continuous
function on Y.

We now aefine set-vaiued mapping as follows:

G: x—=2¥ x =B dvxey

If there is the coincidence point between T and F, then there

exists the coincidence between T and F.

Proof. Let x be a coincidence point for T and F, i.e.
max £ (y)= max F,(u),
YTz, 7T yey % |
Since the set T(x,) is a compact set and F, is continuous, hence
there exists y, e Tx, such that
| E = max F, (u).
xo(yo) uey zo( )
Since (Fplyux¥@® hence o(x)<t mq? Fe(u), thus
ue
(%, )= bllné-af( Fr (W)= (x, ).
Therefore y, € (Fxo)o((x"):(}(xo ), so that y & T(x, )NG(x, ), i.e.

there exists the coinciaence between T and F. The theorem
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follqws.

Theorem 7. Let X, Y satisfy the same conditions as in theorem 6.
Suppose that T: X—~2'is a set-valued mapping, F: X——-{}?(Y), is a
fuzzy mapping and o(x)= [%a%c £, (u). If for each x¢ X, (F )a(x)ﬁ';q_) y
we define the mapping G as follows:
G: X—=27 | x—=(E o)
Then when there is the coincidence between T and G implies

there exists the coincidence point between T and F.

Proof. Suppose that there is the coincidence between T and G,
hence there exists (x,,y, )€ XxY, such that y, e T(x ) M G(x,),
thus Fy, (y, )=ax, )=umanx B (u), i.e. Fx,(-% )= '(Tg.% Fxo(u). Therefore
max £ (y)= max F, (u
YETx, % y) uey % )y
i.e. x, is a coincidence point for T and F. The theorem follows.

Similarly, we can prove that the following results are true.
the -

Theorem 8. Let X, Y satisfy same conditions as theorem 6. Suppose
that S, T are set-valued mappings from X into 2', F: X—%KY) is
a fuzzy mapping satisfying F,;:XS( - Then

(1) if there is the coincidenée between S and T, i.e. there exists
(% ,¥% )€ XxY , implies there exists the coincidence point be-
tween. T ana F;

(il) if T is a compact-valued mapping, i.e. for eaxch xé X, T(x)

is a compact subset in Y and there is a coincidence point between
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T and F implies there exists the coincidence between T and 3, i.e.
when D¢y, (x,; T, F)=1, then Tx,N Sxx0 .
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