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ABSTRACT: In this note we extend the results in Kumar’s paper “Fuzzy
prime spectrum of a ring”. In this regard we prove that the fuzzy prime
spectrum of a ring and the elements of its basis are both compact. Then
by giving two examples we will show that it is not true in general, that any
element of a basis of fuzzy prime spectrum of a Boolean ring is closed, and the
fuzzy prime spectrum itself is Hausdorff. Also by an example it is shown that
the proof of the necessity of the condition of Theorem 5.3 of [3] is incorrect.
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1. Preliminaries

In this section, some definitions, results, and notations which will be needed
later on are presented. From now on R denotes a commutative ring with
identity.

Definition 1.1. Let px be a fuzzy subset of a set S and let ¢t € [0,1].
Then the set u; = {x € S|u(z) > t} is called a level subset of u. We let
po = i1, €. po = {z € S|p(z) = 1}.

Note that if 4 is a fuzzy ideal of R and t € [0, u(0)], then the level subset

pi, t € Im(p) is an ideal of R and is called a level ideal of p, where Im(u)
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denotes the image of the function u.

Theorem 1.2 [9,Proposition 2.1]. A fuzzy subset y of R is a fuzzy ideal
of R iff each level subset u:, ¢t € Im(u) is an ideal of R.

Definition 1.3 [12,Definition 2.10]. Let A be a fuzzy subset of R. Then
the fuzzy ideal generated by A, which is denoted by < A >, is defined by
< A>=(|{ulA C p,p is a fuzzy ideal of R}.

Definition 1.4 [8,Definition 2.1]. A nonconstant fuzzy ideal u of R is
called fuzzy prime if for any two fuzzy ideal o and 6 of R the condition 68 C u
implies that either ¢ C y or 8 C p.

Theorem 1.5 [8,Corollary 2.3]. A fuzzy ideal u of R is fuzzy prime iff
Im(p) = {1,t}, t € [0,1) and the ideal u, is prime.

Definition 1.6. Let S be a set and z € S. Then the fuzzy point 25 of S

1s a fuzzy subset of S which is defined by

g if y==z

0 otherwise ,

zp(y) =

where 3 € (0, 1].

Corollary 1.7 [11,Lemma 3.4]. Let z € R, X € (0,1]. Then (< z) >)" =<
z’y >, where n € IN.

Theorem 1.8 [2]. If S is a multiplicative subset of R which is disjoint
from an ideal I of R, then there exists a prime ideal p of R which is disjoint
from S and containing 1.

Notation 1.9. We let X = {u|u is a fuzzy prime ideal of R}.

Definition 1.10. (See [3, Notation 2.7 (ii),(iii)]). Let 8 be a fuzzy ideal of
R. Then V(#) and X (0) are defined as follows:



(1) V(0) = {n € X]0 C p},

(i5) X(8) = X — V(8).

Definition 1.11 (See [3,Theorem 3.1]). Let T = {X(0)|0 is a fuzzy ideal
of R}. Then the pair (X,T) is a top-ological space, and is called the fuzzy
prime spectrum of R. It is denoted by F-spec R.

Lemma 1.12. (See the proof of Theorem 3.1 of [3]). Let {f;}ica be a
family of fuzzy ideals. Then

U X)) =X(< o >)

1€A 1EA

2. Main Results

Lemma 2.1. Let o be a fuzzy subset of R. Then V(< 0 >) =V(0). In
particular V(< zg >) = V(zp), for any fuzzy point z4 of R.

The following counter-example shows that the converse of Theorem 3.4(iii)
of [3] is not true, in general.

Counter-example 2.2. Let R = Z,z =1¢€ £, 8 = ; € [0,1] and

X=F-spec Z. Define the p € X as follows:

1 if ze2Z
p(z) =
2/3  otherwise.
Then (z3) C p, hence p € X(xg), and consequently X # X(acg)

Lemma 2.3. Let 1,5, € (0,1}, 8 = min{f;, 32} and z,y € R. Then

X(zp,) [} X (ys:) = X((zy)s).

Lemma 2.4. Let K C (0,1], {z:}iea C R, and X C U{X((z:))li € A, t €
K}. Then sup{t|t € K} = 1.
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Lemma 2.5. Let K C (0,1},{z:}ien C R, a € (0,1}, and z € R. If z is
not nilpotent and X (z,) C {J{X((z:):)|Z € A,t € K}, then sup{t|t € K} > a.

Lemma 2.6 Let o, € (0,1]. If o < 3, then

1) X(za) € X(zp)

i) V(z5) C V(z,).

Lemma 2.7. Let K C (0,1],8 = sup{t|t € K}, and {z;};ecn € R. Then
UiX((zi)o)li € A, € K} = U{X((2i))li € A}. )

Lemma 2.8. Letz; € R, 1 =1,...,n,and 8 € [0,1]. Then X((Z z;)g) C

i=1

U X((2i)s)-
= Lemma 2.9. Let a € (0,1], n € N. Then X(z,) C X((z")a)-

Recall that a topological space Y is compact iff every covering of Y by
basic open sets is reducible to a finite subcovering of Y.

Theorem 2.10. The topological space X is compact.

Theorem 2.11. Let a € (0,1] and « € R. Then X(z,) is compact.

The following Theorem is a generalization of Theorem 3.6 of [3], which has
been proved only for Boolean rings.

Theorem 2.12. Suppose that for any z € R, there exists a positive integer

ny > 2 such that 2" =z, and « € [0,1), 8 € (0,1]. If

A= {p € X|In(p) = {1,a}},

then the following statements hold:
(i )If 8> «, then X(z5)[) A is both open and closed in A.

(ii ) For any =,y € R there exists z € R such that

X(zp)| X (ys) = X(25)
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(i1i) A is Hausdorfl.

Remark 2.13. It is known that (Exercise 23 on page 14 of [1]) in Zariski
topology, if R is a Boolean ring, then any element X of basis of Spec R is
both open and closed in Spec R. Moreover Spec R is Hausdorff.

Now the following examples show that these facts do not hold in general
for F' — Spec R. In other words there exists some element of basis of X =
F — Spec R which is not closed, and it is even possible that X is not Tj.

Example 2.14. Let R = Z,. Then

X=F-~SpecR={p":t€]0,1)}.

where p! is defined by

Now we show that if z =1 and o = }, then X(1,) is not closed. Suppose
X(14) is closed. Then there exists a subset K of [0,1] such thst X(1,) =

m V(ys), y € Zo. If y =1 and B € (0,1], then it is not difficult to check
BEK
that X (1) € V(15). Andify=T1, B=0o0ry =0, B € [0,1], then it is seen

that V(yg) = X. Thus X(1,) must be equal to X, which is a contradiction.
Therefore X(1,) is not closed.

Remark 2.15. Consider the fuzzy spectrum X of the Example 3.14.

1/3

Choose pu!/?, € X. Let W be an open set containing p'/2. Then
w2 p g K

W = U X(1a), for some K C (0,1]. Thus there exists « € K such that
aeK

p'/? € X(1,). So @ > 1 > 1 Consequently pu!/* € X(1a) € W. In other

words any open neighbourhood of u'/? also contains x!/3. Thus X is not Tj,

and 1n particular is not T5.
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Remark 2.16 Kumar [3,Theorem 5.3] has proved that if X is disconnected
then R has a nontrivial idempotent. In his proof he asserts that ¢ ® § =<
o|J8 >. However as the following example shows, this is not necessarily true.

Hence the statement of the theorem remains an open problem.

Example 2.17. Let R = Z,. Define the fuzzy ideals 0,8 of R as follows:

% if =0

o(z) = <
L0 if z=1
% if z=0

0(z) = <
0 if z=1

Then it can be seen that c 60 = 6 and < o | J0 >= 0, thus 0 @0 #< g J0 >.
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