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Reduction costs as a vital argument in favour of fuzzy models

1. Introduction

Fuzzy set literature usually justifies the application of fuzzy numbers by the fact, that they
allow an adequate mathematical shaping of inaccuracy, which is not of stochastic nature.
Instead of using "average numbers" for only vaguely known data; fuzzy numbers and fuzzy
intervalls make it possible to model the subjective imaginations of a decision maker as precise
as he can express them. When modelling real problems by means of fuzzy systems the chances
for getting a wrong picture of reality and by that selecting a solution which does not
correspond to the original problem will immensely be reduced. This circumstance signifies a
deciding factor and illustrates one considerable advantage fuzzy models can offer.

However, another and in my opinion even more important advantage of fuzzy modells is
frequently ignored in literature. Deterministic and stochastic models require a vast amount of
information to ensure the identification of at least acceptable "average numbers", so that the
probability of incorrect modelling is kept as low as possible. After the calculation process it
regularly becomes evident, that the major part of information was not essentially necessary for
determining the solution and therefore it would be sufficient to work with vague data in these
sectors. This obvious conflict is caused by the fact, that in classical models the judgement when
information must be precise and at which point vague data will be satisfactory can only be
made after a solution has been found and that implies an ex post-decision.

This paper will demonstrate through the analysis of various decision problems, that fuzzy
modelling in combination with an interactive solution process presents an adequate answer to
the information dilemma of real problems. Instead of an extensive gathering of information ex

ante, the aquisition of additional information will be oriented at set aims and carried out under
consideration of cost-benefit-relations.

2. Modelling decision problems by means of standard decision support or classical
optimisation systems

In case a real decision problem shall be designed through standard decision support or
optimisation models, the decision maker has to look out for a suitable typ of model. Then the
parameters of the chosen model have to be specified as accurate as possible, as with incorrectly
fixed parameters the chances of solving a model which does not illustrate the real decision
problem increase and that implies a calculated solution which represents no reasonable decision
proposal.

" Prof. Dr. Heinrich J. Rommelfanger, Institute of Statistics and Mathematics, Faculty of Economics,
J.W. Goethe-University Frankfurt am Main



31

The straight transfer of a real problem into a standard model requires precisely circumscribed
parameters, a qualification which is also indispensable for the distribution function of stochastic
models. Those specifications can only be based on a tremendous amount of information, which
has to be gathered ex ante, and is therefore linked with immense information costs. Books on
operations research usually undervalue this fact, as they concentrate their special interest on
solution algorithms. However the problem can not be ignored, that even with a huge effort und
high information costs there is no guarantee that all parameters can be precisely defined.
Particular difficulties occur with numbers which will realize in future. This circumstance
presents a vital argument for justifying the application of fuzzy models and is therefore often
mentioned in fuzzy literature.

Let us suppose we succeeded in designing a good model of the real problem and calculate a
appropriate solution. We then take a closer look at those constraints or alternatives which
finally determined the solution. For the majority of cases we will find that only the parameters
of the constraints which causally influenced the solution or the values of favoured alternatives
actually needed a clear-cut specification. Vague specifications would satisfy the requirements
expected by the rest of the model parameters. The problem we have is that we can only identify
the relevant facts after the calculation of the solution.

Although those particular relations can be recognized more often with an increasing
complexity of the model, we will demonstrate the fundamental aspects by means of two simple
examples:

<1 > The simple linear maximisation problem
Xo= 300x; + 400+ 100 - Max
subject to
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Figure 1 illustrates that the optimal solution is found in (14.5, 13), a point which is confirmed
by calculating the intersection point of the 3. and the 5. constraint boundary line. Above that it
is obvious that the point (14.5, 13) would represent the optimal solution, even if the parameter
of the 1, 2. and the 4. constraints had been specified by slightly altered numbers.
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Fig. 1: Graphic solution of the linear programming problem

<2 > A simple decision between alternatives under uncertainty (expected value criterion)
A producer has the problem to determine the output of a product. Based on his pattern of
production he has the choice between five alternatives which are put in order according to size:
aj<az <az<ag<as.
The profit earned with a specific output depends on the demand, which is not with absolute
certainty known. Due to his amount of information the producer either considers a ,high“
(state of nature s), an ,,average” (state of nature sy) or a , low* (state of nature s3) demand. He
appoints the following a priori-probabilities to those states of nature:
p(s1) = 0.5, p(s2)=0.3, p(s3)=02 .
The suceeding profit matrix displays which profits measured in 1.000 DM correspond to the
alternative constellations of output and demand.

S ) $3 expected payoff
a) 210 100 -80 119
a 170 110 -60 106
a3 150 140 -10 115
ay 110 100 0 85
as 50 50 50 50

table 1: A priori-payoff matrix
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Now we have the problem of calculating the solution of the fuzzy LP-model. Today there exist
several efficiént solution programs for fuzzy linear optimisation models which can be employed
for establishing a first solution, see LAI; HWANG (1992), ROMMELFANGER (1994A).

The solution of the described fuzzy maximisation problem shown in table 2 has been calculated
by the recently developed solution algorithm FULPAL 2.0, see ROMMELFANGER (1994A), p.
262fF.

2 variables, 5 constraints, 1 objectives Lambda = 0.921505
VARIABLES

x(1) = 14.769901

x(2) = 12.461782
OBJECTIVES
1. ( 9415.6831 9415.6831 9415.6831 9415.6831 )
Rhs ( 9334.8511 9426.4706 )
Asp. level 9357.7560 p(1) = 0.921505
CONSTRAINTS
1. ( ~0.6459 2.3081 2.3081 5.2621 )
Rhs ( 8.0000 9.5000 )
Asp. level 9.1250
p=20 p(1) = 1.000000
2. ( -80.7718 ~71.3561 -61.9404 -55,2479 )
Rhs ( -44.0000 -40.0000 )
Asp. level -41.0000
p=20 p(2) = 1.000000
3. ( 26.5382 30.2768 32.7691 39.0000 ) -->>1
Rhs ( 36.0000 39.0000 )
Asp. level 38.2500
p=20 §(3) = 1.000000
4. ( -133.5274 ~122.8655 ~113.4498 -101.3110 )
Rhs ( -80.0000 -73.0000 )
Asp. level -74.7500
p=0 p(4) = 1.000000
5. ( 84.0953 91.0186 97.9419 104.8653 )
Rhs ( 97.0000 105.0000 )
Asp. level 103.0000
p=20 B#(5) = 0.921505

table 2: First solution of the ﬁlzzy LP-system

The solution (x;, x3) = (14.769901; 12.461782) results in the maximum value 9415.6831. The
solution is determined by the constraint 3 (at O-level) and the constraint 5 (at 1-level).

In order to obtain a more precise solution, one now has to look for additional information
which presumably improves the specification of the constraints which actually determine the
solution. Assuming that additional information indicates that the crisp coefficients and the
exact right hand sides should be fixed like in the classical LP-model of example < 1 >. Then a
new calculation of the more precisely described fuzzy LP-model presents the identical optimal
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solution as the classical LP-model, see table 3. It is irrelevant that the constraints 1, 2 and 3 are

still only vaguely outlined.
2 variables, 5 constraints, 1 objectives Lambda = 1.000000
VARIABLES

x(1) = 14,500000

%x(2) = 13.000000
OBJECTIVES
1. ( 9550.0000 9550.0000 9550.0000 9550.0000 )
Rhs ( 9550.0000 9550.0000 )
Asp. level 9550.0000 p(1l) = 1.000000
CONSTRAINTS
1. ( ~1.4000 1.5000 1.5000 4.4000 )
Rhs ( 8.0000 9.5000 )
Asp. level 9.1250
p=20 4(1) = 1.000000
2. ( -81.9000 ~72.3500 -62.8000 -56.0000 )
Rhs ( -~44,0000 -40.0000 )
Asp. level -41.0000
p=20 B(2) = 1.000000
3. ( 36.0000 36.0000 36.0000 36.0000 ) -->>]
Rhs ( 36.0000 36.0000 )
Asp. level 36.0000
p=0 4(3) = 1.000000
4, ( -135.3000 ~124.4500 -114.9000 -102.6000 )
Rhs ( -80.0000 =73.0000 )
Asp. level -74.7500
p=0 B(4) = 1.000000
5. ( 97.0000 97.0000 97.0000 97.0000 ) -->>J
Rhs ( 97.0000 97.0000 )
Asp. level 97.0000
p=20 B(5) = 1.000000

table 3: Second solution of the fuzzy LP-system

Obviously it makes sense to determine the objective function right from the beginning as
precise as possible. However, information costs also play an important part. In the case of high
information costs we therefore recommend to start with calculating a compromise solution of
the optimisation problem with vague coefficients in the objective function in order to find out
which values the objective function can possibly present.

At that stage the decision maker has to decide whether the costs for additional information will
be worth the effort. The solution algorithm FULPAL, but also other algorithms, for example
FLIP of R. Slowinski (1990), offer an appropriate instrument for calculating not only
compromise solutions of fuzzy LP-models with fuzzy constraints and an objective function
with fuzzy coefficients, but FULPAL is also suitable for multiobjective models. As every real
number can be interpreted as a specific fuzzy number the coefficients may be real or fuzzy.
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Regarding the assumed a priori-probability distribution it is evident that the altenatives a4 and
as, eventually even alternative a; come off a lot worse than the alternatives a; and a3. Even an
improvement of their specific evaluations of the state of nature would not increase their
chances for being chosen as first preference.

3. Fuzzy decision support and optimisation systems for modelling decision problems

One way to limit the extensive information process could be that one starts designing a model
of the real problem with only the information which can be obtained with little effort and at
reasonable costs. For some of the parameters of the model no exact and workable specification
will be found. Those vague numbers could be replaced by ,means“ entailing however the
problem that by that a model may be conceived which does not adequately picture the real
problem. Therefore it is more advantageous to admit the vague data into the model and then
try to calculate the solution.

A possibility to include vague or verbal evaluations into mathematical models offers the fuzzy
set theory. That is why first of all the transformation of real decision problems into fuzzy
modells is recommended.

3.1 Modelling through fuzzy optimisation models

To begin with we look at a LP-problem with a standard objective function and constraints

which may contain trapezoid fuzzy intervals or triangular fuzzy numbers. These special (flat)
fuzzy numbers will be abbreviated as K=(§-—g; a,a,a+a) and l~3=(b—E; b;b+pB), see

figure 2.
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figure 2: Membership functions of A and B

<3> xo = 300 x1+ 400 x5+ 100 - Max

subject to
08;1;1;1.2) xq -X3 < (8; 8;9.5)
(1.8;2;23;26)x; +(23;26;3;3.4)x; = | (40; 44, 44)
2x; -(4.5,48;552)x; > (-39;-36;-36)
(34,38;41;,44)x) +(4.1;46,5,55)xy = (73; 80; 80)
(3.5;38,41,44)x; +(26;28;3;32)x; < (97, 105; 105)
X1, X2 2 0



36

As a comparison of the objective values in table 2 and 3 reveals, the calculated solutions of the
fuzzy LP-models do not give precise guidance about how additional information influences the
objective values. However, they allow at least a rough estimation of the size of the objective
values. This knowledge can then be applied to cost-benefit-considerations when decisions
about gathering additional information have to be made.

3.2 Modelling through fuzzy decision models

<2a>

S1 ) 3 expected payoff

a; | (170; 200; 220; 230)  (70; 90; 110; 120)  (-110; -90; -70; -50) | (84; 109; 119; 131)
az | (140, 160; 175;190) (85; 100; 115; 125)  (-85; -70; -50; -40) | (78.5; 96; 112; 124.5)
a3 | (120; 140; 160; 170) (115; 135; 145;150)  (-30; -20; 0; 10) | (87; 105; 123.5; 132)
as | (85;105; 115;125)  (85;95;105;115)  (-15; -10; 10; 15) (65; 79; 91; 100)

as | (45; 50; 55; 60) (40; 45; 50; 55) (35; 45; 50, 60) | (41.5; 47.5; 52.5; 56.5)

table 4: A priori-payoff matrix of a producer with trapezoid payoffs U(a;, $j)
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Sfigure 3: Fuzzy expected payoffs

In table 4 and figure 3 it becomes evident, that as long as the postulated a priori-distribution is
accepted the alternative as and the alternative a4 and a; will not be taken into consideration.
Assuming the a priori-distribution is correct extra information about the preferred alternatives
a; and a3 regarding their specific evaluations of the state of natures should be gathered. Just to
make sure, one could additionally attempt to improve the evaluations of a; and a4; in case the
former information process did not supply the wanted selectivity the taking up of information
can also be carried out within a second step. However, an additional gathering of information
only makes sense for the case that the information costs are not higher than

Max (87 - 84; 109 - 105; 123.5-119; 132 - 131) =4.5.

We now presume that the extra information results in the following more precise evaluation of
the alternatives a; and a3 , see table 5 and figure 4.
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S $2 3 expected payoff

ar |(205; 212; 220, 225)  (93;98; 106; 113)  (-96; -87; -79; -65)) | (111.2; 118; 126; 133)
a3 | (134; 145; 152; 160) (126; 135; 140, 145)  (-19;-10;-3;5) |(101;111;117.4; 124.5)

table 5: A priori-payoff matrix of a producer
with trapezoid payoffs Ul(a;, sj) and additional information

A

a
1 5

0 100 130
figure 4: Fuzzy expected payofffs including additional information

After having taken up information alternative a; can be identified as the optimal solution under
the postulated probability distribution.

Another possibility to obtain a superior selectivity for the alternatives offers the classical
method which examines a test market in order to substitute the a priori-probability distribution
by a posteriori-probabilities, see ROMMELFANGER (1994A), p. 97ff.

Still one has to consider the case that extensive information about the entry of the states of
nature may not be available. So it could occur that the a priori-probabilities are not described
precisely, but only vaguely by means of fuzzy intervals, see ROMMELFANGER (1994A), p.
120ff. Then fuzzy expected values could be calculated, whereby it has to be understood that
such a weak state of information results in relatively vague evaluations; therefore less
alternatives can be recognised as being dominated and excluded from the examination.

4. Conclusions

The preceding examples illustrate that the modelling of real decision problems by means of
fuzzy models leads to a reduction of information costs; that circumstance is caused by the fact
that within the interactive solution process additional information is gathered by orientation at
the requirements and under consideration of cost-benefit-relations. Therefore we recommend
to start with transferring the real problem into a fuzzy model instead of trying to design an
operable model right from the beginning. The fuzzy model will then be reduced to an operable
model in order to calculate compromise solutions and by that to present additional information.
That information will be regarded as the basis for further decisions about the taking up of
additional information and reveals in which details the fuzzy modell has to be altered to find a
better adjustment to the real problem.
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Those observations can be transferred to various models; besides others fuzzy net plans can be
named in this context, see ROMMELFANGER (1994B).
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