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1. The method of linear rule interpolation

In fuzzy modeling by If...then rules a crucial problem is the large (exponential) size and
the consequently high computational time of reasoning algorithms. One solution for
decreasing the size of the model is the use of sparse rule bases where

Tr
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Here R = {R,, ... ,R;} the fuzzy rule base, R;=A4; — B; the ith fuzzy rule

and X=X;xX;x..xX, the input universe of discourse.
In the gaps of the sparse rule base the use of the classical reasoning algorithms [1,2 3]
1s impossible, because the observation x does not intersect with any of the rule
antecedents:

T
xn Usupp(4) =9
i=1
The method of linear rule interpolation is one of the possibilities of approximate
reasoning in the sparse rule bases. It decomposes the problem of fuzzy approximation
into an infinite family of crisp problems, corresponding to the a-cuts of the rules and
the observation. It solves the interpolation for every o independently and deduces the
fuzzy solution by uniting these results into a fuzzy approximation again. For details of
this method see e.g. [4,5,6,7], for an extension to multilevel rule bases see e.g. [8].
The basic form of fuzzy rule interpolation is the linear interpolation of two fuzzy
rules, defined by:

dist(A ,x) : dist(x,4,) = dist(B},p) : dist(y,B,)
where 4;{(x{(A, and B;(B,
Ri=A; - B; 1€[1,2] the fuzzy rules flank the observation x

The dist(F,G) denotes the fuzzy distance between the fuzzy sets F and G . The
complete information on the fuzzy distance is two extended "fuzzy sets", df *(F,G) and
dy™(F,G) which are two families of distances (corresponding to the oi-cuts) between
inf{F}, inf{Gy} and sup{F}, sup{G,} (e.g.Fig.1.).

If the universe of discourse of the fuzzy sets F,G is multidimensional, the distances
between inf{F}, inf{G,} and sup{F}, sup{G,} can be defined in the Minkowski
sense: d F,G) = (ZKi= L *(F;, G )W )W
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There are certain necessary conditions for defining fuzzy distances between fuzzy sets.
One is the existence of full ordering in every component of the universe of discourse of
the fuzzy sets, and as a consequence, the existence of a partial ordering ( in the
universe of discourse (graduality of the components). The other one is the existence of
distances in every component of the universe of discourse of the fuzzy sets.

A further important restriction is that all the comparable fuzzy sets should be convex
and normal, otherwise some o-cuts are not connected or do not exists at all, which

makes the distance corresponding to these oi-cuts meaningless.

. |
1 dL(A,B) dU(4,B
4 B / ( ){ (4,B)
IL T ) T . ;
min{X} max {X} X 0 1d

Fig.1. Fuzzy distance between the fuzzy sets 4 and B, d ®(A,B) and d;*(4,B)

The linear interpolation of two fuzzy rules deals only with two rules from the rule base.
It is necessary for the interpolation that the two rules R; and R, are comparable both in
their antecedents and consequents and that they flank the observation (also in the sense
Of()I Al (x (Az and Bl (B2

The partial ordering { as a precedence < or > can have a different meaning on the side
of antecedents and consequents. The only important thing is the flanking of the
observation on the antecedent side and the existence of the ordering on the consequent
side (the consequents of the rules must be comparable in the sense of the ordering ().
With the extended fuzzy sets of fuzzy distances the fundamental equation is written as:

dy 4A.x).dy (x,4;) = d; *(By,y):dL*(y,By)
dy™(Ax).dy™(x.4;) = dy*(B1y)dy®*(¥,B;) Vae [0,1]

where A4y,4,,B,,B, x convex and normal fuzzy sets, dj the lower fuzzy distance and
dy the upper fuzzy distance of the o-cuts

If the distance in the consequence universe can be calculated as the difference of the
coordinates, the consequence is:

wyinf {B}} + wyinf {B, } ‘wiysup{ B} + wagsup{B., }

’nf O = s LY =
i) wy + ng upbi®} W?U +Way
where
IL™ 0, 4 N2 2L a,. 4~ T 0, 4 N 2 TV
dy (4,,%) di(x,4)° " 'V ak4,x) " U d¥(x,4,)
the result: y®*=[inf{y®*},sup{)®} ], y=Ugyay* Vae A

The method offers real advatages if the practical calculations can be restricted to a
small finite set of levels (the important cuts), rather than calculating for all o € [0,1].
In almost all practical implementations of fuzzy control, the membership functions of
both the terms involved and the observation are restricted to piecewise linear, even
usually trapezoidal (or sometimes triangular) shapes. We define the set of important
cuts by the united breakpoint set A. For trapezoidal and triangular sets
A={0,1}. This means usually 2|A| interpolations as both the lower and the upper end
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(infimum and supremum) of y® must be separately approximated, except when the
cores are of zero length (e.g. the triangular case, or the sets defined in [2]), when only
2|Al-1 interpolations are necessary.

2. The analysis of the conclusion between two breakpoint levels

Without hurting generality, in the next calculations we suppose that the two
neighbouring o-levels in the breakpoint set A are 0 and any o (e.g. 1). All other cases
can be obtained from this special case by simply scaling the flanks of the membership
functions along the o axis. In this sense the left and right flanks of trapezoids are
suitable for the general analysis of any piece in the piecwise linear membership function
of the terms. The rules to be interpolated will be denoted by

"If x is A then y is B|" (briefly 4, > B;) and

"If x is Ay then y is B," (briefly 4, — B;)
where x denotes the observation and y is the conclusion.

A trapezoidal membership function can be described by four points P(a;;,0),
P(aj,0), P(aj3,0), P(aj4,0). The examined observation x, antecedents A; and
consequents B; pieces are trapezoidal. Then the equations of the left and right flanks of
these pieces are:

AP =0 (ap-a)tay Afy=o-(az-ay)tay
B =o-(bpp-bjy)+by Bfy=o-(bz-by)+by
XOp=o-(xp-x)+x;  xOy=o-(x3-x4)+x
Statement 1. The equation of the left slope of the conclusion calculated from the
linear interpolation of the two rules A} — B; and Ay — B, and the observation x

between the two breakpoint levels 0 and o is
2
Co” +Co+C;
where C)=c3¢c5+cicq7 , Cy =c3c6+cyc5+ cicgtcgey , C3= C4C6 t CoCg

=

CL=Xp-X1-a1%ay),6=X1-a11,C3=apt @y -x X, ¢4 =ay - %]
cs=b13-b11, €6 =b11, ¢7= byy-by) , cg = by} , ¢g = ayj-ayptaz-ay; , €10 = 31911
The right slope has a similar equation.

The result of the Statement presents that the piecewise linearity of the membership
Junctions of the terms (observation, antecedents and consequents) is not preserved in
the conclusion generally (e.g.Fig.2.). :

H /\A /\ % /< /\y \
"0 1 2 3 4 5 6 8 10X'0123354.256'78Y
ya=a2+6oc+18 o _ 02 =100+ 34
L a+6 Yu -0+8

Fig.2. Linearity of the membership functions of the terms
is not preserved in the conclusion

Let us examine now under which special restrictions on the shape of the terms in the
rules the functions y%; and y%; become polynomial or even linear.
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Corollary 1. The flanks of y are piecewise polynomial (quadratic) if and only if the
two antecedents Ay and A, have equivalent piecewise linear slopes, obtainable
from each other by geometric translations

ap-ap) = ap-a; = =0

Corollary 2. The slopes of y are piecewise linear if either both the antecedents A;
and the consequents B; of the rules are equivalent pairwise and piecewise or if the
antecedents and the observation x are all equivalent piecewise

ap-ay = ap-ay , byy-byy = byy-by = ¢9=0,C;=0
or A)p-aj1] = Ap-ay1 = X3-X] = ¢9=0,C;=0

The conditions of preserving piecewise linearity are rather strict, they are satisfied in

many practical cases, as e.g. when the state variables are covered by "equidistant"

terms. Despite the importance of the special cases satisfying the conditions of

Corollary 2, the result obtained is somewhat disappointing, as it indicates that in the

general case interpolation only for the support and the core (o = 0,1 ; or in' the general

case for the breakpoint set oo € A) might not be satisfactory. If the nonlinearity of the
rational function obtained for the general case is strong, it will be necessary to calculate
for a much higher number of a-s and this increases the computational time.

3. The analysis of the nonlinearity of the conclusion

It is important to know, how many levels should be calculated for the interpolation, as
the number of steps is proportional with the number of levels.

If the conclusion were piecewise linear (or at least practically linear), the number of the
interpolation steps would be only 2|A|. If the conclusion is far from the piecewise
linearity, it is more. So it is important to check the maximal difference between the real
conclusion and it's piecewise linear approximation.

Let us analyze the function of y% qualitatively:
By completing the polynomial division, the function can be rewritten in the form

C.c2-C,c.c,, +Cict (C C,c,-Cc A
=39 2V9%10 110+_1a+29 1v10

o

y = +(Ca+D)=y, +y
- cXc,o+¢y) Cs c; a+B B
where
2 2
A= Cycy "Czc93010 +Cicio  B=S0 ¢ _G D= G5 _zclcm
12 G Co Co

This form shows clearly that the curve of y%; is the superposition of a straight line
y1 , and a hyperbola yz; (see Fig. 3.).

As the hyperbola is monotonicly decreasing with increasing o, the upper bound E for
the linearity error can be given by calculating the difference of y,(0) - y;(1) :

A _Cicf —Cyeyeip+Cichy

1+B) coci0(Cs +50)

E =30 -3 = 5o

Statement 2. The linearity error of y* is not exceeding € > 0 if

(C, +c103)+J(C2 +clo£)2 —4C,(Cy - ¢;8) <% _ 1, (C, +C105)"’J(C2 """10“3)2 —4C,(C;—¢08)

2(C3 ""105) 6o B 2(C3 —"103)
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It seems to be reasonable to express the condition for cg = ay;-a13+ay7-a;] in a form
relative to cjg = @519} , as in this form it is much clearer that the difference of the
degree of fuzziness between the two antecedents (measured by the unit of their
distance from each other) must be limited. For details of the proof see e.g. [9,10].

This latter has a horizontal asymptote at
o = -B and a vertical one at y = 0. The
combination has the same horizontal
asymptote and another one at the linear
component of the function. The left
slope of the.conclusion y% is given by
the section of the curve from o = 0 to
o = 1. If o0 — *eo, the curve converges
> to its asymptote (for large o-s it is
approximately linear). The larger is B,
the farther is oo = 0 from the
neighborhood of the focus, i.e. the area
LBl T where the curve is very nonlinear.

Fig.3. y% is the superposition of straight line y; , and hyperbola yg

Summarizing our results we can state that in some special but practically important
cases the slopes of the calculated conclusion are exactly linear, while in the general
case hyperbolic, however, in most cases rather close to linear so that in the case of
piecewise linear rules and observation it is sufficient to calculate only the breakpoints
A of y, i.e. in the trapezoidal or triangular case for A = {0,1}.

4. The convexity and normality of the fuzzy conclusion

The terms and the observation of the classical reasoning algorithms [1,2], and the
linear rule interpolation are restricted to convex and normal fuzzy sets. Using multiple
level reasoning it is important to check the normality of the generated results between
the reasoning levels. Therefore, it is an interesting question to examine if the
conclusion generated by the linear rule interpolation is suitable for further reasoning
steps; if it keeps normality or not.

Let us check first the convexity. The conclusion y is convex if all its o-cuts are
connected. The interpolation method applied never produces other than connected cuts
as they are expressedly defined as intervals, by their minimum and maximum. So
convexity is automatically satisfied. :

It is much more complicated to overview the situation from the point of view of
normality. The conclusion is normal, if the membership function of y assumes all values
in [0,1]. Obviously, the method of generating y is such that the two points for the
intervals should be always ordered (in the sense of ) in the proper way, i.e.

Vo: inf{y*} < sup{y®}
If the above condition is not fulfilled, the "membership function” wraps around itself
(forms a loop (e.g.Fig.4.)). For any o where this condition is not satisfied, a real

membership function does not exist, i.e. height(y) = max(o, 1]{o | inf()*) < sup(y*)}

Using the equations and denotation of the previous sections, we can formulate the
condition of normality:
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Statement 3. The conclusion y is normal if and only if

_ (ay —%,)by, +(x, —ay,)by, <y = (az —x3)bys +(x; 'als)bzs
2 ay —ay ’ Ay —ag

With introducing new denotations for all core lengths and the distances between the
cores of the neighboring sets:

Kp=ap3-a13,Kp=ay3-ap, K, =x3-%,Kp1 =b13- 515, Ky = bp3 - b22
dg1 =x2-ay3, da2 ayy -x3,dp=b9y - 013
the formulation of statement 3 is:

dp[(Ka; +dap)(Kap +dgn) - (K +da)(Kx +dgp)] <
< (Ka1+da1)(da1 + Ky )Kpa +(Kyp +da2)(dan + Ky )Kpp

Corollary 3. If the rules and the observation contain only triangular membership
Jfunctions, the conclusion is always normal. (K;i=Kp;i=K,.=0) (e.gFig.2)

Corollary 4. If the corresponding cores in the rules have uniform length, the
conclusion will be normal if and only if (K=K, , Kpi=Kp)

dp(Ka-Ky) SKp(dy tdgy + 2Kx)
In the worst case K,, = 0
dp (K, -Ky)<Kpd, , where d, =ap; - aj3
Corollary 5. If K,;; =K, , K;; =Ky, the conclusion is afways normal. (e.g.Fig.5.)

Corollary 6. In the case of uniform core length in both the antecedent and the
consequent parts of the rules, the conclusion will always be normal if the ratio of
the distances of the rule cores of the consequents and of the antecedents does not
exceed the ratio of the core lengths themselves. '

If the scale at both universes is locally normalized by the distance between the two rule
cores (obtaining the normalized cores k,=K,/d, , k,=K,/d, , k,=K,/d}), the conclusion
will always be normal if the consequents have a not shorter core, i.e. the consequents
are not less fuzzy then the antecedents themselves. (The opposite is not true: if the
consequents are less fuzzy, still a fuzzy enough observation might save the normality of
the conclusion.) In the normalized scale we have k, < k; + k, as a sufficient (but still
not necessary) condition. It is enough if the observation is at least as fuzzy as the
antecedents for guaranteeing the normality of the conclusion.

5. Conclusions

In this paper it was examined whether the piecewise linearity of all membership
functions in an If...then rule model and corresponding observation is preserved for the
conclusion constructed by o-cut interpolation for the breakpoint levels. We have
shown that in general, the pieces of the generated conclusion are not linear, even not
polynomial, although they are very close to linear in the domain [0,1]. It was
investigated under what conditions the rational function reduces to polynomial
(quadratic) and to linear (important special cases). The shape of the obtained rational
function was analyzed qualitatively and it turned out to be essentially hyperbolic. If the
part of the hyperbolic curve corresponding to the slope of the conclusion is far enough
from the intensively curved "central” area (close to the focus point), the degree of
nonlinearity is low (Fig.3.). The results obtained that practiceally in almost all cases it is
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enough to interpolate for the breakpoint levels only. This provides low computational
time for the algorithm.

It was also examined if the conclusion maintained convexity and normality. Convexity
automatically follows from the algorithm, but the normality is not always true.
Moreover there are cases - because of the non-normality - when the conclusion does
not exist at all. Conditions for normality in general (with some special cases) and for
the reality of the generated conclusion were also determined.

l', N '
K Kal day o Kax da K22
Fig.4. Normality of the conclusion is Fig.5. If K;; =Ky , Ky =Ky, the
not always satisfied conclusion is always normal
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