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1. Introduction

We shall examine the limit behavior of some difference equations which mod-
els some neural nets. The problem of the construction of the computers with
parallel processinngs (neural nets) is an optimization problem in the follow-
ing sense. If we denote by K the number of elementary processors (neurons)
then the complexity of the algorithm grows with the number K, in the worst
case as K2, So it is important to examine the limit case K — oo.

We shall examine the limit behaviour of some difference equatios which mod-
els some neural nets. But for most of considered problems the limit equation
(obtained as limit of difference equations) has no differentiable solution, since
the initial condition usually gives this. For that purpose we shall use decom-
posable measures and the corresponding integrals ([2],[4],[7],[8],[9],[10},[11],

(16}, [17]).

2. Preliminaries

Let [a,b] be a closed (in some cases semiclosed) subinterval of [~o00, +00].
We shall consider a partial order < on [a,b], which can be the usual order
of the real line, but it can also be another order. All future considerations
will be with respect to the order <.

The operation @ (pseudo-addition) is a function & : [a, b] X [a, 8] — [a, ]
which is commutative, nondecreasing (with respect to <) associative and
either a or b is a zero element, denoted by 0, i.e. for each z € [a, b]

0@z=2z holds.



Let [a,b)+ = {z: 2z € [a,}], z>0}.

The operation ® (pseudo-multiplication) is a function ® : [a, 4] X [a, 5] —
[a,b] which is commutative, positively nondecreasing, i.e. z < ¥ implies
2®2z < y®z z € [ab];, associative and for which there exist a unit
element 1 € [a,d], i.e. for each = € [a, b

1z =2

We suppose, further, 0® z = 0 and that ® is a distributive pseudo-
multiplication with respect to &, i.e. ‘

tRydz)=(z0y)® (z Q 2).

Pseudo-addition & is idempotent if for any z € [a, b]
2@z =2 holds.

Let X be a non-empty set. Let 3 be a o—algebra of subsets of X.
A set function m : 3° — [a, )], (or semiclosed interval) is a @) —decom-
posable measure if there hold

m(®) =0 (if ® is not idempotent)

m(A U B) = m(4) & m(B)

for A,B € Y suchthat ANB=0.
In the case when @ is idempotent, it is possible that m is not defined on an
empty set.

A @ —decomposable measure m is o @ —decomposable if
oo oo
m(|J 4)) = Pm(4)
i=1 i=1

hold for any sequence (A4;) of pairwise disjoint sets from } .

Let m be a 0 @ —decomposable measure. A function f : X — [a,}]
is measurable from below if for any ¢ € [a,}] the sets {z : f(z) < ¢} and



{z : f(z) < ¢} belong to 3. f is measurable, if it is measurable from below
and the sets {z : f(z) > ¢} and {z : f(z) > ¢} belong to 3.

Let f and g be two functions defined on X and with values in [a,B].
Then, we define for any z € X

(f @ g)z) = f(2) ® 9(2) ,

(f ® gX2) = f(z) ® g(z)
and for any c € [a, b]
(c® f)(z) =c® f(=).

We suppose further that ([a,?],®) and ([a, b}, ®) are complete lattice
ordered semigroups. A complete lattice means that for each set 4 C [a,8]
bounded from above (below) there exists sup A (inf A). Further, we suppose
that [a, }] is endowed with a metric d compatible with sup and inf and which
satisfies at laest one of the following conditions:

(a) dizey, z'@y') < d(z,2') + d(y, 1)

(b) dz oy, 2’ &y') < max{d(z,2'), dy,v')}.

Both conditions (a) and (b) imply that :
&(zn,yn) = 0 implies d(z, @ 2, y, & z)— 0.

Condition (b) implies

d($zl') @yj) < Injin m'.a-x‘l(zb vi)-

i=1 j=1
We suppose further the monotonicity of the metric d,ie.
¢<z<y implies d(z,y)> max{d(y,z) d(z,z2)}.

Let ¢ be a positive real number, and B C [a,b]. A subset {If} is & e—net if
for each z € B there exists If such that d(I%,z) < e. H we have If < z, then
we shall call {If} a lower e—net. HIf < If +1 holds, then {If} is monotone.
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We define the characteristic function

0, z¢4

A mapping e : X — [a,}] is an elementary (measurable) function if it has
the following representation

o0
e= @a,- ® x,, for a; € [a,}
i=1
and A; € 3 disjoint if & is not idempotent.

Definition 1, The integral of a simple function s = D00 x s, Jorai €
[a,8] with disjoint A, A,,...A,, if ® is not idempotent, is defined by

/:a ® dm := éa; ® m(4;).

i=1
The integral of an elementary function
0o
e= @a,- ®x4; for a;€[ab] (i€ N) with (4))
i=1

disjoint if @ is not idempotent, is defined by

@ o]
/X e®dm := @a,- ® m(4;).

=1
The sintegral of a bounded measurable (from below for @ idempotent)

function f : X — [a,b], for which, if @ i3 not idempotent for each ¢ > 0,
there exists a monotone ¢ —net in J(X), is defined by

@ ]
/Xf®dm:=n1§t°1°/;( Ya(2) ® dm,

( where (pn) is the sequence of elementary functions constructed in Theorem
1. in [15 ]).
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3. Nonlinear difference equation

We shall consider for given a, § € [a, b] the following difference equation

(1) = a®ch 1,088 ch, )

where £ =0,1,2,..; m,n=0,%1,£2, ..
with the initial condition

1, n
2) c(r)n,n = 1, m
0, otherwise .

=0, m>0
=0,n2>0

vV Iv

Example 1, Let ® = min and ® = + on [~00,+00]. Then we have 0 =
400 and 1 = 0. Taking a = § = 1 = 0 the equation (1) reduces on the
Bellman equation ( which appears for example in the construction
of parallel processor of multiplication of matrices)

k+1 __ k k
cm,n = mln{cm—l,mcm,n—l}

where £ =0,1,2,...; m,n =0,%1,%2,...,

with the initial conditions
0, a=0,m>0

c?,,',,= 0b m=0,220
+00, otherwise .

We shall introduce the operator 7 : C? — C, where
C={chn k=012 ;mn=02%1,+2..}
and T acts in the following way

Teh,.=aod _ 080, ;.

This operator is linear with respect to @ and ®.
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4. Limit behavior

Now we shall consider the corresponding continuous analog of the problem
(1) - (2).

We consider functions defined on [0, M] X [~00, +00]?, where M > 0, and
with values in [a,d], i.e., a : [0, M] X [—00,+00])? = [a,}]. Then the corre-
sponding equation to (1) of continuous variable with mesh size A > 0 has
the form

(3) ch(z + h: ‘c;y) =a® ch(z’ z - h; U) ® ﬂ ® ch(z,z, v-— h)’

taking z = kh, k=0,1,2,... and ¢(kh,mh,nh) = cf,,',,.
The corresponding initial condition to (2) has the form

1, y=0,z2>0
(4) en(0,z,9) =(z,9)={ 1, £=0,y20
0, otherwise .
Introducing the operator T} : CZ — Cj, where
Ch = {cn : ea(kh,mh,nh) = cf,,,n fork = 0,1,2,...; m,n = 0,+1,42,...},
such that
Then(z,2,y) = a @ ep(z,2 — h,y)® B ® en(z, 2,y — h)

for 2 = kh (k = 0,1,2,...), we obtain that the solution of the problem
(8)—- (4) is given by

(5) cn(z,2,9) = (Th) (7, p).
We introduce the pseudo-scalar product for functions with values in [a, ]
o
(f,9)e = / I(z,y) ® g(z, y)dzdy.

We take K — oo or A — 0 (since the interval [0, M] is bounded it is the
same) for a point zp € [0, M] that kh — 25. We have for a smooth function

J(z,y)

(C)‘(Zo, z, y)) f(-’B, y))Q = ((Th)kco(z) y)) f(z) y))@ = (CO(J;, 1/), (T;)*f(z) y))$:
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where Ty is the adjoint operator of the operator T, with respect to the
paeudo—scala.r product (.,.)e.
The weak — @ —limit of solutions cx( 2o, z,y) of the problem (3)—(4) ,since

lim(e(20, 2, 9), (2, 1))e = F(f(z,¥))

is a pseudo-linear functional, we shall denote by c(29, z,¥), i.e., F(f(z,¥)) =
(C(ZO; z, y): f(xi I/))Q

Example 2. Take Min - Plus on the interval [—o00, + 00]. Then we have for
the solution (5) of the problem (3) — (4)

amo )=l =  min o natnfrda-nh-rh)}

The adjosnt operator (T,:)‘ acts in the followsng way

k - i —_ri — 0 h)}.
(TR) f(=z,y) r1+r2=h,n£2{o,1,2,...}{ ra—r38 + (2 + rih,y + rah)}

Taking the weak— @ —limit we obtain that

(e(20,2,¥), F(2,1))e = (*(z, ), min {-ria=raf+f(z+r1,y+r2)}.

ri+ra=so, r;€[0,400)

The limst equation to (3) on smooth functson s
de . dec 8¢
= min{a — %,ﬂ - a_y}’

whose solution can be find by the Pontryagin mazimum principe .
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