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1. Introduction

The classic taxonomy of supervised and supervised learning commonly encountered in pattern
recognition [1] [3] is a useful yet somewhat simplified categorization of many real-world classification
problems. With the progress in applications of fuzzy sets techniques in this realm, some conceptually new
domains have emerged. In this setting the issue of a fundamental dichotomy of supervised versus
unsupervised learning need to be addressed as well. The examples of unsupervised learning viewed as
fuzzy clustering cf. [ 1] [2] are usually contrasted with the notions of supervised learning (fuzzy classifiers)
cf. [4]. The supervised learning is based on a training set with each pattern being labelled. For the
unsupervised learning, this class assignment is not available. Those two are very distinct modes of
learning. More realistically, there could also be many intermediate scenarios in which the training set is
composed of a relatively small group of the labelled patterns and a vast majority of the unlabelled objects.
This mixture of the patterns calls for the algorithms of the fuzzy clustering carried under partial supervision,
the idea introduced in [5]. Depending upon the sizes of the respective populations of the labelled and
unlabelled patterns the effect of partial supervision can be diminished or enhanced as shown in the diagram
below (here "f" denotes a fraction of the labelled patterns occurring within the entire population). In an

extreme situation, that occurs for f=0 or f=1,we come up with the classic unsupervised or supervised
models of learning.

{ partial N
+ supervision
>
0 1 f
unsupervised supervised
\ learning learning J

In this study we are interested in another aspect of partially supervised learning in which the
information about classes is given in an implicit format. A convincing example arises in the realm of
referential classification where the training set includes the patterns arranged in pairs along with their

similarity levels (e.g., patterns x and y are A - similar with Ae [0, 1] standing for this degree of
similarity). This classification outcome is definitely less detailed than that achieved as a complete vector of
membership values. The problem exhibiting this format of information about the classes will be referred to
as an implicit (or implicitly-supervised) classification. Even though these two schemes fall under the same
category of the supervised learning, the character of the available classification information is very distinct.



78

2. Problem formulation

This section provides with a formal statement of the problem. Let the feature space be formed by

n-dimensional vectors of the unit hypercube, say xe [0, 1]. In its explicit form the learning set includes
the classification results that are provided as the membership vectors of an m-dimensional classification

space, o€ [0, 1]™ ; each coordinate of o is interpreted as a degree of membership in the corresponding

class, o; € [0, 1]. The learning set, called B - training set, appears as a collection of the feature - class
assignment pairs,

(x1, 01)  (x2, @2) , .o (%M, OM)

On the other hand, the implicit format of the available classification results implies that the m-dimensional
classification space is usually reduced to a unit interval the values of whose represent the referential
characteristics of the patterns. For the matching (similarity) property we are concerned with the pairs of

the patterns Xy, X, and their associated similarity levels; altogether these constitute a so-called R - training
set,

((x1, x3), simy)  ((x2, x3), simg) ... ((xn, xy), simn) |

where sim; € [0, 1] describes a similarity between the corresponding pairs of the patterns. Essentially,
each sim, could be regarded as an aggregation of the class membership ;and m'i, namely

' (mi , m'i), with y :[ 0, 1]™ —[ 0, 1] being treated as the referential transformation. Graphically, one can
portray the results of the explicit and implicit classification as shown in Fig.1.

detailed class assignment
explicit classification

o general class assignment
implicit classification

Fig.1. Explicit and implicit class assignment

One can also assume (that is intuitively appealing) that M << N as the assignment of the detailed class
membership values is far more demanding than the scalar appointment done at the higher level of some
general properties of the classes (such as e.g., similarity, difference, etc.). The same family of the training
examples may also include instances coming from the 3B- as well as R - training set.

3. The General Architecture

The overall architecture of the classifier, Fig.2, consists of the two main functional blocks. The
first one is responsible for the direct classification (3B - training set). It is followed by the module of the
referential classification that is developed using the R - training set.
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——»| Logic Processor

Fig.2. General architecture of a classifier

The direct classification is realized through a logic processor (LP) that constitute a fuzzy neural network
with a single hidden layer, cf. [6][7], Fig.3.
class; classj class membership

OR neurons

AND neurons

Fig.3. Topology of a Logic Processor

The hidden layer includes the AND neurons whose role is to develop combinations (conjunctions) of the
features x1, X3 ... X, deemed necessary in the classification problem. The regions covering the patterns
belonging to the same class and produced by the hidden layer are aggregated disjunctively (ORwise) at the
output layer.

The referential part of the classifier treats the vectors of class membership as its inputs and returns
the values of their referential computations. The simplest version of this module can be envisioned as a
single m-input MATCH neuron as in Fig.2. Its extended version is just a referential (matching) processor,
cf. [6], where the levels of matching among the classes are additionally processed before generating the
overall similarity level between the classes.

4. The Design of the Classifier

Depending whether we deal with the patterns from the 8 or R - training family, different modules
of the classifier are developed. The fully labelled patterns are used to train the logic processor. The
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formulation of the problem is fairly standard: given is a learning set (xi, ®1), (x2, ®2), ..., (xm, OM)
Construct the logic processor ( including both its architecture and the connections) minimizing the given
performance index Q,

min Q
LP
where

M
Q= Z (o - LP (xx, connections))T(wy - LP (xx, connections))
k=1

The structural learning usually involves additions and/or removals of the individual processing units
(units). The parametric learning is driven by the gradient of the above performance index, - Sconnections’

It is important to note here that the cardinality of the labelled patterns (B - training set) is usually very low
in comparison to the overall training set. Therefore one should not be concerned too much about a plain
memorization carried out by the processor; let us stress that the primary objective is to minimize Q even at
an expense of a significant expansion of the logic processor. While at this phase the vast portion of the
learning activities take place, some fine tuning can be done later in conjunction with the learning the
referential part of the classifier. For the referential phase of learning (viz. the learning exploiting the
elements in the R training set), the two identical copies of the previously constructed logic processor are
used in the configuration shown in Fig.4. The training set used there comprises of the triples ((xx, xL), simy),
k =1, 2, ... N, constituting the dominant part of the entire training set, M << N, while sim, denotes a
degree of similarity reported for xy and x ( generally speaking, the discussed learning scheme works
well for any other referential operation). The patterns xy as well as x, are propagated through the logic
processors and produce two vectors of class assignment, say wy and mk These are presented at the inputs
of the matching neuron. The new training set comes in the form of the ordered triples (mk, Oy, simki k
=1, 2, ..., N. The parameters of the MATCH neuron are usvdated based on a squared error between sim,

and the output of the matching neuron MATCH (mk; n)'k,w The performance index Q is defined as the
sum taken over the R-training set,

N L}
Q=Y (simy - MATCH (ay; o, w)f
k=1
The gradient-driven scheme of updating is obvious,

w(new) = w - §ﬂ
ow

€€ [0,1]. In an on-line learning mode the modifications of w occur after presenting an individual input-output
triple of data, ((n, o, sim) ( the subscript "k", as irrelevant in this scheme, has been left out)

0 _ 5 (sim- MATCH o, o, w)) ZMATCH(@, @' w)

ow ow

Its scalar notation leads to the expression,
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d MATC;Ivffo, o, w) - aasi {J;I‘l (O)j = o)j) swj} = E;gvii { At[(a)i = 0)1) SWi])

where T and s denote some t- and s-norms, respectively, and = stands for the equality index, cf. [6].
Furthermore,

A= % [(OJJ'E(I)}) SWj] .
j=1

Once the learning of the referential part is over but the value of the performance index is still not

acceptable, two conceptually distinct remedial steps could be sought:

- an expansion of the referential module of the classifier by replacing the single MATCH neuron by the
referential processor [6] [7].

- anincremental retraining the logic processor already constructed with the aid of the B - training set. A
special caution should be exercised, though, as this part of the classifier has been already trained and
too radical modifications of its connections done at this stage could easily wash away the previous
structure (due to the relatively small size of the B - training set). Hence the learning should be
vigilantly monitored. The corresponding learning schemes are shown in Fig.4.

MATCH
x_’ Logic essor Wx
sim(x, ¥)
— _ogic ProgéSsor Qy
y

~——g incremental training
sl training the referential part

Fig.4. Learning modes in the classification scheme

The connections of these two logic processors are updated simultaneously so that they are always maintained
equal. Let x, y, and sim be provided. In view of this learning policy, the derivative of Q reads as

aQ = aQ amx + aQ amy
0 connection dwx J connection OJwy 0 connection

(note that we have started with the two identical copies of the logic processor).
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5. Conclusions

We have introduced the new class of pattern classifiers operating under explicit-implicit supervision.
The architecture of the classifier along with the learning policies are developed in a way that allows us to
operate under a variety of combinations of implicitly and explicitly labelled patterns.

The usefulness of the discussed classifier extends far beyond the domain of pattern recognition; one

can easily formulate problems of multi-objective decision-making into the way they fit the studied referential
framework.
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