NORMS AND METRICS OVER INTUITIONISTIC FUZZY LOGICS Krassimir T. Atanassov

Math. Research Lab. - IPACT, P.O.Box 12, Sofia-1113, BULGARIA

Let us emphasize in the first place (similarly to [1]) that here we do not study these properties of the Intuitionistic Fuzzy Logics (IFLs) (see [2,3]) which follow directly from the fact that the support of an IFL is a set in the sense of the set theory (see [4]).

Here we shall use a metric, which is not related to the elements of a fixed set of propositions S and to the values of the function V, i.e. of the functions μ and τ , defined for these elements.

This peculiarity is based on the fact, that the "norm" of a given IFL's element is really not a norm in the sense of [5,6]. This "norm" is in some sense a "pseudo-norm", which assigns a number to the element $p \in S$. This number is related with the values of the functions p and r (which are calculated for this element). Thus the important conditions:

$$\|p\| = 0$$
 iff $p = 0$,

and

$$\|p\| = \|q\|$$
 iff $p = q$,

are not valid here. Instead the following ones are valid:

$$\|p\| = \|q\|$$
 iff $\mu(p) = \mu(q) & r(p) = r(q)$.

Really, the value of $\tilde{p}(p)$ plays the role of a norm (more precise - pseudo-norm) for the element $p \in S$.

In the case of the intuitionistic fuzzing, the existing of the second functional component - the function τ - generates different possibilities for the defining of the concept "norm" (in the sense of pseudo-norm) over S.

The first norm for every propositional form A (c.f. [7]: each proposition is a propositional form; if A is a propositional form then $\neg A$ is a propositional form; if A and B are propositional forms, then A & B, A \times B, A \supset B are propositional forms) is:

$$\sigma(A) = \mu(A) + \gamma(A).$$

It assigns the degree of "definiteness" of A. From

$$\pi(A) = 1 - \mu(A) - \gamma(A)$$

it follows that

$$\sigma(A) = 1 - \pi(A).$$

NORMS AND METRICS OVER INTUITIONISTIC FUZZY LOGICS Krassimir T. Atanassov

Math. Research Lab. - IPACT, P.O.Box 12, Sofia-1113, BULGARIA

Let us emphasize in the first place (similarly to [1]) that here we do not study these properties of the Intuitionistic Fuzzy Logics (IFLs) (see [2,3]) which follow directly from the fact that the support of an IFL is a set in the sense of the set theory (see [4]).

Here we shall use a metric, which is not related to the elements of a fixed set of propositions S and to the values of the function V, i.e. of the functions μ and γ , defined for these elements.

This peculiarity is based on the fact, that the "norm" of a given IFL's element is really not a norm in the sense of [5,6]. This "norm" is in some sense a "pseudo-norm", which assigns a number to the element $p \in S$. This number is related with the values of the functions p and r (which are calculated for this element). Thus the important conditions:

$$\|p\| = 0$$
 iff $p = 0$,

and

$$\|p\| = \|q\|$$
 iff $p = q$,

are not valid here. Instead the following ones are valid:

$$\|p\| = \|q\|$$
 iff $\mu(p) = \mu(q) & \gamma(p) = \gamma(q)$.

Really, the value of $\tilde{p}(p)$ plays the role of a norm (more precise - pseudo-norm) for the element $p \in S$.

In the case of the intuitionistic fuzzing, the existing of the second functional component - the function τ - generates different possibilities for the defining of the concept "norm" (in the sense of pseudo-norm) over S.

The first norm for every propositional form A (c.f. [7]: each proposition is a propositional form; if A is a propositional form then γA is a propositional form; if A and B are propositional forms, then A & B, A \simeq B, A \supset B are propositional forms) is:

$$\sigma(A) = \mu(A) + \gamma(A).$$

It assigns the degree of "definiteness" of A. From

$$\pi(A) = 1 - \mu(A) - \gamma(A)$$

it follows that

$$\sigma(A) = 1 - \pi(A).$$

THEOREM 1: For every two propositional forms A and B (see [8,9]):

- (a) $\sigma(\gamma A) = \sigma(A)$;
- (b) $\sigma(A \& B) \ge \min(\sigma(A), \sigma(B));$
- (c) $\sigma(A \times B) \le \max(\sigma(A), \sigma(B))$;
- (d) $\sigma(A \supset B) \le 1$, for the two types of the implication;
- (e) $\sigma(\exists xA(x)) \ge \max_{x \in S} \sigma(A(x));$
- (f) $\sigma(\forall x A(x)) \le \min_{x \in S} \sigma(A(x));$
- $(g) \sigma(\square A) = 1;$
- (h) $\sigma(\lozenge A) = 1;$
- (i) $\sigma(D_{\alpha}(A)) = 1$, for every $\alpha \in [0, 1]$;
- (j) $\sigma(F_{\alpha,\beta}(A)) = \alpha + \beta + (1 \alpha \beta) \cdot \sigma(A)$ for every α , $\beta \in [0, 1]$ such that $\alpha + \beta \le 1$;
- (k) $\sigma(G_{\alpha, \beta})$ A)) $\leq \sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (1) $\sigma(H_{\alpha,\beta}(A)) \leq \beta + (\alpha + \beta) \cdot \sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (m) $\sigma(H_{\alpha, \beta}^{*}(A)) \leq \beta + (1 \beta).\sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (n) $\sigma(J_{\alpha,\beta}(A)) \le \alpha + (\alpha + \beta).\sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (o) $\sigma(J_{\alpha, B}^{*}(A)) \leq \alpha + (1 \alpha).\sigma(A)$, for every $\alpha, B \in [0, 1]$;
- (p) $\sigma(!A) \geq 0$;
- $(q) \sigma(?A) \geq 0;$
- (r) $\sigma(P_{\alpha, \beta}(A)) \ge 0$, for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \le 1$;
- (s) $\sigma(Q (A)) \ge 0$, for every α , $\beta \in \{0, 1\}$ and $\alpha + \beta \le 1$.

The second norm, which we shall define for every propositional form A is:

$$\partial(A) = (\mu(A)^2 + \gamma(A)^2)^{1/2}$$

Thus defined the two norms are analogous to both basic classical types of norms.

For the norm & the following assertions are valid.

THEOREM 2: For every two propositional forms A and B:

- $(a) \partial(A) = \partial(A);$
- (b) $\partial(A \& B) \ge \min(\partial(A), \partial(B));$
- (c) $\partial(A \times B) \leq \max(\partial(A), \partial(B));$
- (d) $\partial(A \supset B) \le 1$, for the two types of the implication;

THEOREM 1: For every two propositional forms A and B (see [8,9]):

- (a) $\sigma(A) = \sigma(A)$;
- (b) $\sigma(A \& B) \ge \min(\sigma(A), \sigma(B))$;
- (c) $\sigma(A \times B) \leq \max(\sigma(A), \sigma(B));$
- (d) $\sigma(A \supset B) \le 1$, for the two types of the implication;
- (e) $\sigma(\exists x A(x)) \ge \max_{x \in S} \sigma(A(x));$
- (f) $\sigma(\forall xA(x)) \le \min_{x \in S} \sigma(A(x));$
- $(g) \sigma(\square A) = 1;$
- (h) $\sigma(\lozenge A) = 1;$
- (i) $\sigma(D_{\alpha}(A)) = 1$, for every $\alpha \in [0, 1]$;
- (j) $\sigma(F_{\alpha,\beta}(A)) = \alpha + \beta + (1 \alpha \beta) \cdot \sigma(A)$ for every α , $\beta \in [0, 1]$ such that $\alpha + \beta \le 1$;
- (k) $\sigma(G_{\alpha, \beta}(A)) \le \sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (1) $\sigma(H_{\alpha, \beta}(A)) \le \beta + (\alpha + \beta).\sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (m) $\sigma(H_{\alpha,\beta}^*(A)) \leq \beta + (1 \beta).\sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (n) $\sigma(J_{\alpha,\beta}(A)) \le \alpha + (\alpha + \beta).\sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (0) $\sigma(J_{\alpha,\beta}^{*}(A)) \le \alpha + (1 \alpha).\sigma(A)$, for every $\alpha, \beta \in [0, 1]$;
- (p) $\sigma(!A) \geq 0$;
- $(q) \sigma(?A) \geq 0;$
- (r) $\sigma(P_{\alpha, B}(A)) \ge 0$, for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \le 1$;
- (s) $\sigma(Q_{\alpha, \beta}(A)) \ge 0$, for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \le 1$.

The second norm, which we shall define for every propositional form A is:

$$\partial(A) = (\mu(A)^2 + \tau(A)^2)^{1/2}$$

Thus defined the two norms are analogous to both basic classical types of norms.

For the norm 0 the following assertions are valid. THEOREM 2: For every two propositional forms A and B:

- $(a) \delta(A) = \delta(A);$
- (b) $\partial(A \& B) \ge \min(\partial(A), \partial(B));$
- (c) $\partial(A \times B) \leq \max(\partial(A), \partial(B));$
- (d) $d(A \supset B) \le 1$, for the two types of the implication;

- (e) ∂(∃xA(x)) ≤ max ∂(A(x)); x∈S
- (f) $\partial(\forall xA(x)) \leq \min_{x \in S} \partial(A(x));$
- (g) $\partial(\Box A) \geq 1 \mu(A)$;
- (h) $\partial(\Diamond A) \geq 1 \gamma(A);$
- (i) $\partial(D_{\alpha}(A)) \geq \partial(A)$, for every $\alpha \in [0, 1]$;
- (j) $\partial(F_{\alpha,\beta}(A)) \geq \partial(A)$, for every $\alpha, \beta \in [0, 1]$ such that $\alpha + \beta \leq 1$;
- (K) $\partial(G_{\alpha, B}(A)) \le \partial(A)$, for every $\alpha, B \in \{0, 1\}$;
- (1) $\partial(H_{\alpha,\beta}(A)) \geq \alpha.\partial(A)$, for every $\alpha, \beta \in [0, 1]$;
- (m) $\partial(H_{\alpha,\beta}^{*}(A)) \geq \alpha.\partial(A)$, for every $\alpha, \beta \in [0, 1]$;
- (n) $\partial(J_{\alpha, B}(A)) \geq B.\partial(A)$, for every $\alpha, B \in [0, 1]$;
- (0) $\partial(J_{\alpha,\beta}^{*}(A)) \geq \beta. \partial(A)$, for every $\alpha, \beta \in [0, 1]$;
- $(p) \ \delta(!A) \ge 1/2;$
- $(q) \delta(?A) \ge 1/2;$
- (r) $\partial(P_{\alpha, \beta}(A)) \geq \bar{\alpha}$, for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \leq 1$;
- (s) $\partial(Q_{\alpha, B}(A)) \geq \overline{B}$, for every α , $\beta \in [0, 1]$ and $\alpha + \beta \leq 1$.

In the theory of fuzzy sets (see e.g. [10]) two different types of distances are defined, generated from the following metric

$$m(A, B) = |\mu(A) - \mu(B)|$$

for the propositional forms A and B.

Here the Hemming's and Euclid's metrics coincide. In the case of the intuitionistic fuzziness these metrics are different:

$$h(A, B) = \frac{1}{2} \cdot (| \mu(A) - \mu(B) | + | \gamma(A) - \gamma(B) |)$$

(Heming's metric) and

$$e(A, B) = (\frac{1}{2}, ((\mu(A) - \mu(B))^2 + (\gamma(A) - \gamma(B))^2))^{1/2}$$

(Euclid's metric).

When the equality

$$\gamma(A) = 1 - \mu(A),$$

is valid, both metrics are reduced to the metric m(A, B).

For proving, that h and e are pseudo-metrics over E in the

- (e) $\partial(\exists xA(x)) \le \max_{x \in S} \partial(A(x));$
- (f) $\partial(\forall xA(x)) \leq \min_{x \in S} \partial(A(x));$
- (g) $\partial(\Box A) \geq 1 \mu(A)$;
- (h) $\partial(\Diamond A) \geq 1 \gamma(A);$
- (i) $\partial(D_{\alpha}(A)) \geq \partial(A)$, for every $\alpha \in [0, 1]$;
- (j) $\partial(F_{\alpha,\beta}(A)) \geq \partial(A)$, for every $\alpha, \beta \in [0, 1]$ such that $\alpha + \beta \leq 1$:
- (k) $\partial(G_{\alpha, \beta}(A)) \leq \partial(A)$, for every $\alpha, \beta \in [0, 1]$;
- (1) $\partial(H_{\alpha, B}(A)) \geq \alpha. \partial(A)$, for every $\alpha, \beta \in [0, 1]$;
- (m) $\partial(H_{\alpha, \beta}^{*}(A)) \geq \alpha. \partial(A)$, for every $\alpha, \beta \in [0, 1]$;
- (n) $\partial(J_{\alpha, \beta}(A)) \geq \beta. \partial(A)$, for every $\alpha, \beta \in [0, 1]$;
- (o) $\partial(J_{\alpha,\beta}^{*}(A)) \geq \beta. \partial(A)$, for every $\alpha, \beta \in [0, 1]$;
- (p) $\partial(1A) \geq 1/2$;
- (9) (9) (1) (1) (1) (2)
- (r) $\partial (P_{\alpha, \beta}(A)) \geq \overline{\alpha}$, for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \leq 1$;
- (s) $\partial(Q_{\alpha, \beta}(A)) \geq B$, for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \leq 1$.

In the theory of fuzzy sets (see e.g. [10]) two different types of distances are defined, generated from the following metric

$$m(A, B) = |\mu(A) - \mu(B)|$$

for the propositional forms A and B.

Here the Hemming's and Euclid's metrics coincide. In the case of the intuitionistic fuzziness these metrics are different:

$$h(A, B) = \frac{1}{2} \cdot (|\mu(A) - \mu(B)| + |\gamma(A) - \gamma(B)|)$$

(Heming's metric) and

$$e(A, B) = (\frac{1}{2}, ((\mu(A) - \mu(B))^2 + (\gamma(A) - \gamma(B))^2))^{1/2}$$

(Euclid's metric).

When the equality

$$\gamma(A) = 1 - \mu(A),$$

is valid, both metrics are reduced to the metric m(A, B).

For proving, that h and e are pseudo-metrics over E in the

sense of [7], we must prove that for every three propositional forms A, B and C:

$$h(A, B) + h(B, C) \ge h(A, C),$$

 $h(A, B) = h(B, A),$
 $e(A, B) + e(B, C) \ge e(A, C),$
 $e(A, B) = e(B, A).$

The third equality, which characterizes the metrics (as above) is not valid. Therefore h and e are pseudo-mertrixes. The proofs of the above four equalities and inequalities are trivial.

* *

Using the geometrical interpretations of IFLs from [11,12], we shall discuss other types of norms for a given proposition p (see Fig. 1 and 2).

For the case of the third interpretation we can calculate the area of the triangle as a function of the angles $\alpha(p)$ and $\beta(p)$.

Fig. 2.

sense of [7], we must prove that for every three propositional forms A, B and C:

$$h(A, B) + h(B, C) \ge h(A, C),$$

 $h(A, B) = h(B, A),$
 $e(A, B) + e(B, C) \ge e(A, C),$
 $e(A, B) = e(B, A).$

The third equality, which characterizes the metrics (as above) is not valid. Therefore h and e are pseudo-mertrixes. The proofs of the above four equalities and inequalities are trivial.

* *

Using the geometrical interpretations of IFLs from [11,12], we shall discuss other types of norms for a given proposition p (see Fig. 1 and 2).

For the case of the third interpretation we can calculate the area of the triangle as a function of the angles $\alpha(p)$ and $\beta(p)$.

Fig. 2.

Then to the proposition p we can juxtapose the number

$$s_1(p) = (\cos(\alpha(p) - \beta(p)) - \cos(\alpha(p) + \beta(p)))/\sin(\alpha(p) + \beta(p)),$$

where $\alpha(p) = \pi \cdot \mu(p)$ and $\beta(p) = \pi \cdot \gamma(p)$ (here "\pi" is the mathematical constant "pi").

Obviously, in the case of the ordinary fuzzy sets, $\alpha(p) + \beta(p) = \pi$, i.e. $s(p) = \omega$.

For the case of the fourth interpretation we can calculate the area of the triangle as a function of the legs of the rectangular triangle with lenghts $\mu(p)$ and $\gamma(p)$. Then to the proposition p we can juxtapose the number

$$s_{p}(p) = \mu(p) \cdot \gamma(p)$$
.

REFERENCES:

- [1] Atanassov K., Norms and metrics over intuitionistic fuzzy sets, BUSEFAL, Vol. 55, 1993, 11-20.
- [2] Atanassov K., Two variants of intuitonistic fuzzy propositional calculus. Preprint IM-MFAIS-5-88, Sofia, 1988.
- [3] Atanassov K., Two variants of intuitionistic fuzzy modal logic. Preprint IM-MFAIS-3-89, Sofia, 1989.
- [4] Atanassov K., Intuitionistic fuzzy sets, Fuzzy sets and Systems, Vol. 20 (1986), No. 1, 87-96.
- [5] Kuratowski K. Topology, Vol. 1, New York, Acad. Press, 1966.
- [6] Yosida K., Functional analysis, Berlin, Springer-Verlag, 1965.
- [7] Mendelson E., Introduction to mathematical logic, Princeton, NJ: D. Van Nostrand, 1964.
- [8] Atanassov K., Some modal type of operators in intuitionistic fuzzy modal logic. Part I, BUSEFAL, Vol. 58, 1994 (in press).
- [9] Atanassov K., Some modal type of operators in intuitionistic fuzzy modal logic. Part II, submitted to BUSEFAL.
- [10] Kaufmann A., Introduction a la theorie des sour-ensembles flous, Paris, Masson, 1977.
- [11] Atanassov K., On the geometrical interpretations of the intuitionistic fuzzy logical objects. Part II., submitted to BUSEFAL.
- [12] Atanassov K., On the geometrical interpretations of the intuitionistic fuzzy logical objects. Part III., submitted to BUSEFAL.

Then to the proposition p we can juxtapose the number

$$s_{1}(p) = (\cos(\alpha(p) - \beta(p)) - \cos(\alpha(p) + \beta(p)))/\sin(\alpha(p) + \beta(p)),$$

where $\alpha(p) = \pi \cdot \mu(p)$ and $\beta(p) = \pi \cdot \gamma(p)$ (here "\pi" is the mathematical constant "pi").

Obviously, in the case of the ordinary fuzzy sets, $\alpha(p) + \beta(p) = \pi$, i.e. $s(p) = \infty$.

For the case of the fourth interpretation we can calculate the area of the triangle as a function of the legs of the rectangular triangle with lenghts $\mu(p)$ and $\gamma(p)$. Then to the proposition p we can juxtapose the number

$$s_{\rho}(p) = \mu(p) \cdot r(p)$$
.

REFERENCES:

- [1] Atanassov K., Norms and metrics over intuitionistic fuzzy sets, BUSEFAL, Vol. 55, 1993, 11-20.
- [2] Atanassov K., Two variants of intuitonistic fuzzy propositional calculus. Preprint IM-MFAIS-5-88, Sofia, 1988.
- [3] Atanassov K., Two variants of intuitionistic fuzzy modal logic. Preprint IM-MFAIS-3-89, Sofia, 1989.
- [4] Atanassov K., Intuitionistic fuzzy sets, Fuzzy sets and Systems, Vol. 20 (1986), No. 1, 87-96.
- [5] Kuratowski K. Topology, Vol. 1, New York, Acad. Press, 1966.
- [6] Yosida K., Functional analysis, Berlin, Springer-Verlag, 1965.
- [7] Mendelson E., Introduction to mathematical logic, Princeton, NJ: D. Van Nostrand, 1964.
- [8] Atanassov K., Some modal type of operators in intuitionistic fuzzy modal logic. Part I, BUSEFAL, Vol. 58, 1994 (in press).
- [9] Atanassov K., Some modal type of operators in intuitionistic fuzzy modal logic. Part II, submitted to BUSEFAL.
- [10] Kaufmann A., Introduction a la theorie des sour-ensembles flous, Paris, Masson, 1977.
- [11] Atanassov K., On the geometrical interpretations of the intuitionistic fuzzy logical objects. Part II., submitted to BUSEFAL.
- [12] Atanassov K., On the geometrical interpretations of the intuitionistic fuzzy logical objects. Part III., submitted to BUSEFAL.