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NORMS AND METRICS OVER INTUITIONISTIC FUZZY LOGICS
' Krassimir T. Atanassov

Math. Research Lab, - IPACT, P.0O.Box 12, Sofia-1113, BULGARIA

Let us emphasize in the first place (similarly to {i}) that
here we do not study these properties of the Intuitionistic Fuzzy
Logics (IFLs) {see [2,3]1) which follow directly from the fact
that the support of an IFL is a set in the sense of the set theo-
ry {see [4}).

Here we shall use a metric, which is not related to the ele-
mentﬁ of a fixed set of propositions S and to the values of the

function V, i.e. of the functions p and 7, defined for these

elements,.

This peculiarity is based on the fact, that the "norm" of a
given IFL’s element is really not a norm in the sense of [5,6]}].
This "norm" is in some sense a '"pseudo-norm", which assigns a
number to the element p € 8. This number is related with the va-
lues of the functions p and 7 (which are calculated for this

element).’Thus ithe important conditions:

. iph = 0 iff p = O,
and
WPH = Nl iFF P = g
are not valid here., Instead the following ones are valid:
el = gl iff p(p) = p(q) & r(p) = r(q).
Really, the value of p(p) plays the role of a norm {more
precise - pseundo-norm) for the element p € S,

In the case of the intuitionistic fuzzing, the existing of the
second functional component - the function v - generates diffe-
rent possibilities for the defining of the concept "norm" (in the
sense of pseudo-norm) over S.

The first norm for every propositional form A (c.f. [7]): each
proposition is a propositional form; if A is a propositional form
then 1A 1is a propositional form; if A and B are propositional
forms, then A & B, A ¥ B, A 5 B are propositional forms) is:

g(A) = plA)Y + 7T(A).
It assigns the degree of "definiteness" of A. From
m{A) = 1 - p(A) - v(4A)
it follows that )
g{A) = 1 - w(A).
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Let us emphasize in the first place (similarly to {11}) that
here we do not study these properties of the Intuitionistic Fuzzy
Logics (IFLs) (see [2,3)}) which follow directly <from the fact
that the support of an IFL is a set in the sense of the set theo-
ry (see [4}).

Here we shall use a metric, which is not related to the ele-
ments of a fixed set of propositions S8 and to the values of the
function V, i.e. of the functions p and 7, defined for these
elements.

This peculiarity is based on the fact, that the "norm" of a
given IFL’s element is really not a norm in the sense of [5,6]}.
This "norm" is in some sense a ‘'"pseudo-norm", which assigns a
number to the element p € S. This number is related with the va-

lues of the functions p and 7 "{which are calculated for this

element). Thus the important conditions:

. ip#i = &6 iff p = O,
and
Wph = wal iff p = q,
are not valid here, Instead the ;ollowing ones are valid:
pi = dglt iff p(p) = p(qa) & v(p) = r(q).
Really, the value of D(p) plays the role of a norm (more
precise - pseudo-norm) for the element p € S.

In the case of the intuitionistic fuzzing, the existing of the
second functional component - the function 7r - generates diffe-
rent possibilities for the defining of the concept "norm" (in the
sense of pseudo-norm) over S,

The first norm for every propositional form A (c.f. [7]): each
proposition is a propositional form; if A is a propositional form
then 1A is a propositional form; if A and B are propositional
forms, then A & B, A v B, A > B are propositional forms) is:

of(A) = plAY + 7T(A).
It assigns the degree of "definiteness" of A. From
n{A) = 1 - p(AY - 71(A)
it follows that )
g(A)Y = 1 - w(A).
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THEOREM 1: Fbr every iwo propositional forms A and B (see [8,9]):
(a) g(1A) = o(A);

(b) (A & B) > min(o(A), o(B));

(c) o(A ¥ B) < max(oc(A), o(B));

(d) o(A > é) ¢ 1, for the itwo types of the implication;

(e) o(3xA(xX)) 2 max g(A(x));

X€S
(f) o(vzA(X)) < ?ég O{A(X));
(g) o(DA) = ¢,
() o(0A) = 1

(1) o(D (A)) = %, for every o € [0, 1};
¢

{(J) o(F B(A)) X+ B+ (1- a - B).o(A) for every o, BeE[0O, 1]
X,

such that a + B ¢ {;
(K) o(G 8)A)) € o(A), for every «, B € [0, 1];
a

1

{1) o(H B(A)) £ B+ (ax+ By.o(a), for every «, B € [0, &}];
«a,

*
{(m) o(H (A)Y) £ B + (1%
«, B

BY.o(A), for every « B € [0, 1}]:

(nYy o(J B(A)) £ o + (& + 8).0(A),'for every o, B £ [0, 11};

(o) o(J (A)) € a + (1 - a).o(A), for every o, B € [0, 1];

&,

(p) c(!'A)Yy » O

(d) o{(7A) > O;

{(r) o(P B(A)) 2 0, for every o, B € [0, 1] and a + B < 1;
[e 4

t

(s) o(Q B(A)) > 0, for every a, B € {0, 1} and o + B ¢ 1.

The second norm, which we shall define for every propositional
form A 1is:

2 2 1/2
a(A) = (p(A) + 71(A) )

Thus defined the two norms are analogous to both basic classi-
cal types of norms.
For the norm 8 the following assertions are valid.
THEOREM 2: For every two propositional forms A and B:
(a) 3(1A) = A(A);
(b) 3(A & B) 2 min(d(A), 3(B));
{c) a(A x B) < max{da(A), 8(B));
(d) 8(A > B) < i, for the two types of the implication;
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THEOREM 1: For every two propositional forms A and B (see {8,9}):

(a)
(b)
(c)
(a)
(e)

(f)

(g)
(h)

(1)

(3}

(X}

(1)

(m)

(n)

(o)

{(P)
{(q)
(r)

(s)

G(14) = o(A);

o(A & B) » min(o(A), o(B));

o(A x B) < max(oc{A), a(B});

(A D é) < 1, for the two types of the implication;
T(3IXA(X)) » igg C(A(X));

C{VXA({X)) < min o{A(x))};
X€S

o (D4A)

o (QA)

o(D (A)) = 1, for every o € {0, i}
x

"

1
4

o(F (AY) = a + B + (i- ¢ - B).o(A) for every o, Be[0O, 1}

,

such that o + B ¢ 1;

g(G B)A)) $ o(A), for every a, B € [0, 1};
a

o {H B(A)) € B+ (ax+ B)Y.o(A), for every o, B € [Cc, 11;
o,

*
o (H (A))
&,

[7aN

8 + (1 B).o(A), for every q, B ¢ [0, 11;

o (J 8(A)) S a + (o + B).O(A),'for every o, B € [0, 1}

3
g {(J (AY) s x + (1 - «a).o(A), for every a, B € [0, 1}];

Gg('A) 2 O;

g(7A) 2 O;

G (B B(A)) 2 0, for every a, B € [0, 1] and o + B < 1
[

ag(Q@ B(A)) 2 0, for every a, B € [0, 1} and o + B ¢ 1.

L

The second norm, which we shall define for every propositional

form A is:

2 2 t/2
a(A) = (p(A) + T1(A) )

Thus defined the two norms are analogous to both basic classi-

cal types of norms.

For the norm 8 the following assertions are valid.

THEOREM 2: For every two propositional forms A and B:

(a)
(b)
(c)
(d)

d(1A) = 3(A);

(A & B) > min(a8(A), 9(B));

3(A ¥ B) < max(d(A), 3(B));

d(A D B) < 1, for the two types of the implication;
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{(e) d(3xA(X)) < maxX d(A(X));
XES

(£f) d(vxA(X)) < min 3(A(x));
X€S

(g) d(DA)Y 2 4 - p(A);,

(h) a(0A) > t - 7r(A),

(1) (D (A)Y) 2 8(A), for every « € [0, 11
o

{(j) 3(F B(A)) 2 3(A), for every «, B € [0, 1] such that o + B

< 1,
(K) a(G B(A)) $ d(A), for every «a, B € [0, 1];
o4

4

(1) a(H B(A)) > «.3(A), for every a, B € (O, 11;
X,

« .
(m) 3(H B(A)) > x.3(A), for every a, B € [0, 1};
&,

() 93 (A)) 2 B.O(A), for every o, B € [0, 1];

1

. :
(o) a(J (A)Y) 2 B.o(A), for every «, B € [0, {1},

q,

(P) 3(!A) » 1/ 2

M

(@) a(7A) 2 1/

(r) a(Pp B(A)) > o, for every o, B € [0, 41} and a + B ¢ 1;
&

{s)} 8(Q (A)) ¥ B, for every o, B € [0, 1] and a + B < 1.
X,

In the theory of fuzzy sets (see e.g. [10]) two different ty-
pes of distances are defined, generated from the following met-
ric

m(A, B) = |jp(A) - p(B)|
for the propositional forms A and B.
Here the Hemming’s and Euclid’s metrics coincide. In the case

of the intuitionistic fuzziness these metrics are different:
i
h{Aa, B) = é-(lu(A) - P(BY] + Jr(A)Y ~ v(B) )

(Heming’s metric) and

i 2 2 1/2
e{A, B) = (é.((u(A) - p(BY) + (r(A) - 7(B)) ))

{Buclid’s metric).
When the equality
T{A) = 1 - p(4a),
is valid, both meirics are reduced to the metric m(A, B).

For proving, that h and e are pseudo-metrics over E in the
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(e) O(3xA(X)) < max J(A(x)):
X€ES

{f) 3(VXA(X)) < min (A(x));
X€S

(8) (DA} 2 t - p(a);
{h) a{QA) 2 1t - 7(A),
(1) 3(D (A}) x d(A), for every a € [0, 11};
x
(3) a(F B(A)) 2 0{(A), for every «a B € [0, 1] such that o + B
&,
< 1,
(K) 9(G 8(A)) S 8(A), for every «, B € [0, 113

(1) 3a(H B(A)) > a.d(A), for every o, B € {0, 1];

(m) 8(H B(A)) > a.d{A), for every o B € [0, 1];
{(n) 48{(J B(A)) x B.3d(A), for every a, B € [0, 13
o,
¥

(o) o(J B(A)) 2 B.o(A), for every «, B € [0, 1};
&,

(P) 8(1A) » 1/ 2;

i

(94} a(?4A) 2 t/

{r) a(P B(A)) : «, for every a, B € [0, 1} and o + B < i&;
o

'

(s) a(a g (A)) 2 B, for every «, B € [0, 1] and o + B ¢ 1.

X,

In the theory of fuzzy setis {see e.g. [10]) two different ty-
pes of distances are defined, generated from the following met-
ric

m(A, B) = |p(A) - p(B)|
for the propositional forms A and B.
Here the Hemming’s and Buclid’s metrics coincide. In the case

of the intuitionistic fuzziness these metrics are different:
i
h{A, B) = év(lU(A) - p(BYl + lr(A)y - v(B)})

(Heming’s metric) and

1 2 2 172
e{A, B) = (é.((H(A) - B(BY)Y + (r(A) - 7(B)) }))

({Euclid’s metric).
wWhen the eguality
T(A) = 1 - p(a),
is valid, both metrics are reduced to the metric m(4A, B).

For proving, that h and e are pseudo-metrics over E in the
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sense of [7], we must prove - that for every three propositional
forms A, B and C:

h(A, B) + h(B, C) > h(A, C),
h{A, B) = h(B, A},
e(A, B) + e(B, C) 2 e(A, Cy),
e{A, B) = e(B, A).
The third equality, which characterizes +the metrics (as abo-
ve) is not valid. Therefore h and e are pseudo-mertrixes. The
proofs of the above four egqualities and inequalities are trivial.

¥

Using the geometrical interpretations of IFLs from [i1,12}, we

shall discuss other types of norms for a given pProposition p (see
Fig. 1 and 2).

For the case of the third interpretation we can calculate the

area of the triangle as a function of the angles «o(p) and B(p).

°(<P)=‘ﬂ2/kﬁv
«L(p) f’(P)/ P =T.v(p

Fig. 4.

o>

~(9)

J A

0> L/A(p ) 240

Fig, 2.



56

sense of [T}, we must prove - that for every three propositional
forms A, B and C:

h(A, B) + h(B, C) » h{(4A, C),
h(A, B) = h(B, A},
e(A, B) + e(B, C) » e(a, C),
e{A, B) = e(B, A).
The third equality, which characterizes the metrics (as abo-
ve) is not valid. Therefore h and e are pseudo-mertrixes. The
proofs of the above four equalities and inequalities are trivial.

3

Using the geometrical interpretations of IFLs from {11,123}, we

shall discuss other types of norms for a given proposition P (see
Fig. {1 and 2}).

For the case of the third interpretation we can calculate the

area of the triangle as a function of the angles a(p) and B(p).

)

d{p)= T. ()
«L(p) A (p) pCp) =T Cp)

~(p)

J A

)
0,07 f(P) 44,05

Fig. 2.
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Then to the proposition p we can juxtapose the number

Si(P) = (cos(x(p) -~ B(p)) - cos(a(p) + B(P)))/sin(x(p) + B(P)),

where o(p) = w.p(p) and B(p) = 7. 7r(p) (here "u" is the mathemati-
cal constant "pi").

Obviously, in the case of the ordinary fuzzy sets, a(p) + B(p)
= W, i.e. s{(p) = oow.

For the case of the fourth interpretation we can calculate the
area of the triangle as a function of the legs of the rectangular
triangle with lenghts p(p) and v(p). Then to the proposition p we

can juxtapose the number

SE(P) = (P r(P).
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Then to the proposition p we can juxtapose the number
Si(P) = (cos(ax(p) - B(p)) - cos(ux(p) + B(p)))/sin(x(p) + B(P)),

where a(p) = w.p(p) and B(p) = w.7v(p) (here "u" is the mathemati-
cal constant "pi").

Obviously, in the case of the ordinary fuzzy sets, ao{p) + B{(D)
= ", i.e, s(p}) = o,

For the case of the fourth interpretation we can calculate the
area of the triangle as a function of the legs of the rectangular
triangle with lenghts p(p) and 7v(p). Then to the proposition p we

can juxtapose the number

SE(P) = pp).7(P).
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