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1. Introduction and preliminaries

The purpose of this paper is to introduce the concept of
quasi—symmedian Variational inequalities for fuzzy mapping
and to obtain some existence theorems of Solutions of quasi

-symiedian variational inequalities for fuzzy wmappings. The
obtained findings is a continuation of the shih-sen Chang’s [2,
31.

Let M and N be two Hansdorff topological vector spaces

and XCM, Y € N be two nonempty closed convex subsets
.Throughout this paper we always denote by F0 1ISL(Y)) the
collection of all fuzzy sets on X(Y).
A mapping from X into SL(y)(E;(X)) is called a fuzzy mapping.
If F:X— (Y) is a fuzzy mapping »then for each x€ X, F( x)
(denote by F,. in the sequel) is a fuzzy set in :;lY) and F, (y
) is the degree of membership of point y in Fyk. A fuzzy
mapping F:X“‘EkY) is called convex, if for each x € X, the
fuzzy set F. on Y is a fuzzy convex set, i.e.» for any yi»ya €
y»t € 00,17
Fa(ty:1 H(1-t)y2) 2min{F. (y1)»Falya)}.

A fuzzy mapping F:X—*E;(Y) is called closed, if F.(y) is.
upper semi—continugus (as a function on XXY).

In the sequel, We denote by

(A) a=x€EX:Ax)Z> ), a €(0,1]
the a-cut set of A EQ.(X).
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2. Quasi-symmedian Vasiational inequalitise
for fuzzy mappings

Lemma 1. Let M and N be two Hansdorff topological vector
spaces,X M, Y N be two nonempty compact convex subsets, and
a : X—(0,1]1 a lower semi—continuons function. Let F:X—*?Ay)
be a fuzzy mapping with (F.) a cxZD for each x€X. Let S:X—

z¥ be a mapping defined by S(x)=(Fx) a x>

ti) If F is a convex fuzzy mapoing, then S is a mapping
with nonempty convex Values;

(i) If F is a closed convex fuzzy mapping, then s is an
upper semi-continuous mapping with nonempty | close coavex
viaues.

Proof. (i) By the assumptions, for each x4 X s( x)Z®.
Since F is a convex fuzzy mapping, for each x£X and for any vy,
z€S(x),t €00, 13

Fulty+(1-t)z) Zmin{F.y)sFy(z) ) 2 o (k).
This implies that ty+(1-1)2 € (Fy) a ¢x>=5(x)s i.evrsi x) is
convey.

' (ii) For any x€X if {y,}, (I is an index set)is
any net of stx) and y,;—yo €Y, thus (xby,)—(x»yo) €XXY and F,
(y )=z a(x).
Since F is a closed fuzzy mapping, Fo(y) is an upper semi
—continuous function of (x,»y),Hence we have
a (x)<Iim Futy ) <Fylyo)

i.e.sy0 € s(x).This means Jthat s(x) is a closed set.

Since X and Y are compact sets and S is a closed Valued
mapping,by a well-known result (cf.[1,pp 110-1111), the upper
semi-continuity of S is equivalent to the close-ness of graph
(s) (the graph of s).Therefore in order to prove the upper
semi-continuity of S, it suffices to prove that the graph of
S is closed. ‘

Let {(x;,y;)},¢1 be any net of graph(s) and x;—>x0 €X»y, ;

—yo € Y.Since F is closed,
[im Fx (y,)<Fx (yo). 2.1
Besides,9 since o (x;)<<F. (y,> and « is lower semi
—continuous, it follows from (2,1) that
a (x0)<Fx (yo)»
i.e. (xosyo) € Graph(s).This shows that graph(s) is a closed
set of XXY.

Definition 1. Let N be a topological vector space. N- is
called quasi-complete, if for any bounded closed subset K of
N is complete.
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Remark. (i) It is easy to know that each Banach space is
quasi-complete;

(ii) If N is a quasi-complete locally convex Hansdorffl
topelogical vector space and K&N is a compact subset, then
co(k) is also a compact subset of N{cf.[3,propositions 5.1.31).

Theorem 1. Let M be a locally convex Hansdorff
topological vector space and N a quasi— complete locally
convex Hansdorff topological vector space. Let XGM and Y&N
be two nonempty compact convex subsets. Let F. ‘(—*3-(‘{) be a

closed convex fuzzy mapping and o :X—(0, 11 a lower semi
~continuous function such that for each x€ Xo (Fx) @ <> -« is
nonempty. Supose further that the function O :XXV<XX— R is
continuous and satisfies the follnmng conditions:

(1) P xy,x)20  for all x€Xuy€Y;

(ii) for any given (x>y) € XXY, & (x,y>u) is quasi- convex
in uSX;Then there exist x¢X and y£ (F) a ¢ x> such that
quasi-symmwedin variational inequalities

G (xoysx) 20 for all x€X.
Proof: Firstswe define a mapping T:X—z¥ by
T =(F) o crsx € XL

By lemma 1, T:X—z” is an upper semi- continueus mapping
with nonempty compact convex valnes. Let )

[T, y){s €X: b (xoyssI=nind (x> y> Wi (xoy) € XKV,
since O (x,y,u) is continuous and quasi-convex in u, I x, y)
is a closed convex subset of X. Since X is compacts [T (i, y) P
for all (x,y) €XXY.This implies that II.XX Y — z > s a
mapping with nonempty compact convex values.

On the other hand, it is easy to show that II.XXY—=z~ is
upper semi-continuous (this can be seen from [ 1, p. 111

scorollary 91). "

Next , since X is compact and T is an upper semi

—continuous mapping with nonempty compact convex values:. by a
well-known result (see [1,p. 114’ptupu>ltlun 111),we know that
T(x)= U(F ) a x>
is a compact bubsg of Y.By Rewmark (ii) in the beginning of
this section, co(T(X)) is also a compact subset of Y.
Now we define a mapping P as follows:
P:XXBo(T(X))—>z*> S5 T Py, yi=(I1(xsy), Tx).
therefore P is an upper semi-continuous mapping from a compact
convex subset XXCo(T(X)) into z*><SS<¢TX>> with nonempty
compact convex values. BY Fan-Glicksberg fixed point theorem
there exists a (X,y) €XXGo(T(X))such that (x; y) € P( X ¥
.Hence we have x€ I1(X,y) and V€ Tx.This implies that
yEIx: 0 RT ) 20 (VX)) 20 for all x€X4.
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This completes the proof.
Theorem 2. Let MLN,X,Y,F and @ be the same as in theorem
1. Let & :XXY—M"(the dual of M and N:XX Y — M be two
continuous mappings satisfying the following conditions:
(i) nxx)=0 for all x€X;
tii) for any given (x,y) €EXXV,< & (x,y)» N (usx)> is quasi
—convex in u€X. )
Then there exist X£X and V€ Fe o «%> such that symmedian
variational inequalities
<€ Gy X)) 220  for all x£X.
Proof. Taking & (xsysx)=¢ & (x,y)s N (u,x) > in theorem 1,
the conclusion follows from Theorem 1 imrediately.
Theorem 3. Let M be a reflexive Banach space, N a quasi
—complete locally convex Hansdor f f topological vector space
and X M and YN be two nonempty close convex subsets. Let F
:X—*}(y)be a convex fuzzy mapping and F.(y):XX¥—[0.,1] as a
function of (x»y) be upper semi— continuous in the weak
topology of X and the topology of Y. Let a:X—(0,11be weakly
lower semi—continuous. Suppose further that for each x € X, (Fy)
= x> 1S a nonempty compact subset of Y and that £ .XXV—M >
is continuous from the weak topology of X and topology of Y
to the norm topology of M.Suppose that n:X2Y—M is a weakly
continuous function satisfving the following conditions: '
(i) nox=0 for all x£X;
(i) for any Goy) €XXY< & oy)s Nluwx) is convex in u
£X;
(iii) there exists an UEXs H Uil <r such that for any x€X,
Wxlf=r
max < & (x»y)» N (@ x) »<20. (2.2)
J€Fsy .
Then there exist x€X and 7€ (F) « ¢« % such that symmedian
veriational inequalities
CE ey N Gox)Y=0 for all x€X.  (2.9)
Proof. Let the mapping T:X—2z” be definde by Tx=(F,) a x>
.BY the assumptions and lemma 1, T:X—2¥ is a mapping with
nonempty compact convex valuesand it is ubper semi—continuous
from the weak topology of X to the topelogy of Y. Denote X, =X
(1B, (0),where B, (0)={xEM: || xil <r}»then X.is a weakly compact
convex subset of X.Letting
D (x> ysu)=< § (Xsy)s N (Usx) >y
then O :X, XY¥YXX,—R is a continucus function in the weak
topology of X. to the topology of Y. By Theorem 1, there
exist x€X,»y € (Fx) a x> such that ’
CEALT NG >20  for all x€X, (2.4)
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In the sequel,we shall discuss two cases:
tay. If {ixii=r, by condition (iii) and (2.4) we have
CEART) M (@ X) =0 2.5)
Hence for any given x€ X, taking A €(0,1) which is little
encugh such that w=Ax+(1-ADTF X, from (2.4) we have
02 € (L) N wsX)> (by condition (ii))
LACE ¥ (X)) HU-ANE (P N (WX >
= ACE(TT), N (LT,
(bd, If X4 <{rs then for x£X, taking A € (0,10  which
is little enough such that Z=Ax+(1-A) T€X.. By the same
way as in (a)rwe can prove that

......

This completes the proot.
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