QUASI-SYMMEDIAN VARIATIONAL INEQUALITIES FOR FUZZY MAPPINGS

Bing-you Li

(Department of Mathematics, Hebei Teacher's University, Shijiazhuang, 050016, The People's Republic of China)

Qing-dian Fung

(Hebei TV university, Shijiazhuang, The People's Republic of China)

Abstract. In this paper some existence theorems of solutions of quasi-symmedian variational inequalities for fuzzy mappings are established. The obtained findings is a continuation of the shih-sen chang's papers [2,3].

Key words: quasi-symmedian variational inequality for fuzzy mapping.

1. Introduction and preliminaries

The purpose of this paper is to introduce the concept of quasi-symmedian Variational inequalities for fuzzy mapping and to obtain some existence theorems of Solutions of quasi-symmedian variational inequalities for fuzzy mappings. The obtained findings is a continuation of the shih-sen Chang's [2, 3].

Let M and N be two Hansdorff topological vector spaces and XCN, Y C N be two nonempty closed convex subsets. Throughout this paper we always denote by 3(X) (3(Y)) the collection of all fuzzy sets on X(Y).

A mapping from X into $\mathfrak{Z}(y)(\mathfrak{Z}(X))$ is called a fuzzy mapping. If $F: X \to (Y)$ is a fuzzy mapping, then for each $x \in X$, F(x) (denote by F_{∞} in the sequel) is a fuzzy set in $\mathfrak{Z}(Y)$ and $F_{\infty}(y)$ is the degree of membership of point y in F_{∞} . A fuzzy mapping $F: X \to \mathfrak{Z}(Y)$ is called convex, if for each $x \in X$, the fuzzy set F_{∞} on Y is a fuzzy convex set, i.e., for any $y_1, y_2 \in y, t \in [0,1]$

 $F_{\mathbf{x}}(ty_1+(1-t)y_2) \ge \min\{F_{\mathbf{x}}(y_1), F_{\mathbf{x}}(y_2)\}.$

A fuzzy mapping $F: X \to \mathcal{J}(Y)$ is called closed, if $F_{\mathbf{x}}(y)$ is upper semi-continuous (as a function on $X \times Y$).

In the sequel, We denote by

(A) $\alpha = \{x \in X : A(x) \geqslant \alpha \}, \alpha \in (0,1]$

the α -cut set of $A \in \mathcal{F}(X)$.

Quasi-symmedian Vasiational inequalitise for fuzzy mappings

Lemma 1. Let M and N be two Hansdorff topological vector spaces, X M, Y N be two nonempty compact convex subsets, and $\alpha: X \rightarrow (0,1]$ a lower semi-continuous function. Let $F: X \rightarrow \mathcal{J}(y)$ be a fuzzy mapping with $(F_x)_{\alpha(x)} \neq \Phi$ for each $x \in X$. Let $S: X \rightarrow \mathbb{Z}^y$ be a mapping defined by $S(x) = (F_x)_{\alpha(x)}$.

- (i) If F is a convex fuzzy mapping, then S is a mapping with nonempty convex Values;
- (ii) If F is a closed convex fuzzy mapping, then s is an upper semi-continuous mapping with nonempty close convex vlaues.

Proof. (i) By the assumptions, for each $x \in X$ $s(x) \neq \Phi$. Since F is a convex fuzzy mapping, for each $x \in X$ and for any y, $z \in S(x)$, $t \in [0,1]$

 $F_{\mathbf{x}}(\mathbf{t}\mathbf{y}+(1-\mathbf{t})\mathbf{z}) \geqslant \min\{F_{\mathbf{x}}(\mathbf{y}), F_{\mathbf{y}}(\mathbf{z})\} \geqslant \alpha(\mathbf{x}).$

This implies that $ty+(1-t)z \in (F_x)_{\alpha(x)}=s(x)$, i.e., s(x) is convex.

(ii) For any $x \in X$ if $\{y_j\}_{j \in I}(I \text{ is an index set})$ is any net of s(x) and $y_j \rightarrow y_0 \in Y$, thus $(x,y_j) \rightarrow (x,y_0) \in X \times Y$ and $F_*(y_j) \geqslant \alpha(x)$.

Since F is a closed fuzzy mapping, $F_{\mathbf{x}}(y)$ is an upper semi-continuous function of (x,y). Hence we have

$$\alpha(x) \leq \overline{i_i m} F_{\mathbf{x}}(y_j) \leq F_{\mathbf{x}}(y_0)$$

i.e., $y_0 \in s(x)$. This means that s(x) is a closed set.

Since X and Y are compact sets and S is a closed Valued mapping, by a well-known result (cf.[1,pp 110-111]), the upper semi-continuity of S is equivalent to the close-ness of graph (s) (the graph of s). Therefore in order to prove the upper semi-continuity of S, it suffices to prove that the graph of S is closed.

Let $\{(x_j, y_j)\}_{j \in I}$ be any net of graph(s) and $x_j \rightarrow x_0 \in X$, $y_j \rightarrow y_0 \in Y$. Since F is closed,

$$\overline{\lim} F_{\mathbf{x}} (y_{\mathbf{J}}) \leqslant F_{\mathbf{x}} (y_{\mathbf{0}}). \tag{2.1}$$

Besides, since $\alpha(x_j) \leq F_{\mathbf{x}}(y_j)$ and α is lower semi-continuous, it follows from (2,1) that

$$\alpha (x_0) \leqslant F_{\mathbf{x}} (y_0),$$

i.e. $(x_0,y_0) \in Graph(s)$. This shows that graph(s) is a closed set of $X \times Y$.

Definition 1. Let N be a topological vector space. N is called quasi-complete, if for any bounded closed subset K of N is complete.

Remark. (i) It is easy to know that each Banach space is quasi-complete;

(ii) If N is a quasi-complete locally convex Hansdorff topological vector space and $K \subset N$ is a compact subset, then co(k) is also a compact subset of N(cf.[3,propositions 5.1.3]).

Theorem 1. Let M be a locally convex Hansdorff topological vector space and N a quasi-complete locally convex Hansdorff topological vector space. Let XCM and YCN be two nonempty compact convex subsets. Let $F: X \to \mathcal{J}(Y)$ be a closed convex fuzzy mapping and $\alpha: X \to (0, 1]$ a lower semi-continuous function such that for each $x \in X$, $(F_x)_{\alpha: (x)}$ is nonempty. Supose further that the function $\phi: X \times Y \times X \to R$ is continuous and satisfies the following conditions:

- (i) $\phi(x,y,x) \ge 0$ for all $x \in X, y \in Y$;
- (ii) for any given $(x,y) \in X \times Y$, $\phi(x,y,u)$ is quasi-convex in $u \in X$; Then there exist $x \in X$ and $y \in (F_x)_{\alpha < x}$ such that quasi-symmedin variational inequalities

 $\phi(x,y,x) \ge 0$ for all $x \in X$.

Proof: First, we define a mapping $T: X \rightarrow z^y$ by $T(x) = (F_x)_{\alpha(x)}, x \in X$.

By lemma 1, $T: X \rightarrow z^y$ is an upper semi-continuous mapping with nonempty compact convex values. Let

 $\Pi(x,y)$ { $s \in X$: $\Phi(x,y,s) = \min_{x \in X} \Phi(x,y,u)$ }, $(x,y) \in X \times Y$. since $\Phi(x,y,u)$ is continuous and quasi-convex in u, $\Pi(x,y)$ is a closed convex subset of X. Since X is compact, $\Pi(x,y) \neq \Phi$ for all $(x,y) \in X \times Y$. This implies that $\Pi: X \times Y \to z^{\times}$ is a mapping with nonempty compact convex values.

On the other hand, it is easy to show that $\Pi: X \times Y \to_{\mathbb{Z}^*}$ is upper semi-continuous (this can be seen from [1, p. 111, corollary 9]).

Next, since X is compact and T is an upper semi-continuous mapping with nonempty compact convex values, by a well-known result (see [1,p.112,proposition 11]), we know that $T(x)=U(F_x)$ α (x)

is a compact subset of Y. By Rewmark (ii) in the beginning of this section, $\overline{co}(T(X))$ is also a compact subset of Y.

Now we define a mapping P as follows:

 $P: X \times \overline{co}(T(X)) \rightarrow_Z \times \overline{co}(T(X)), P(x,y) = (\prod (x,y), Tx).$

therefore P is an upper semi-continuous mapping from a compact convex subset $X \times \overline{co}(T(X))$ into $z^{* \times \overline{co}(T(X))}$ with nonempty compact convex values. BY Fan-Glicksberg fixed point theorem, there exists a $(\overline{x},\overline{y}) \in X \times \overline{co}(T(X))$ such that $(\overline{x},\overline{y}) \in P(\overline{x},\overline{y})$. Hence we have $\overline{x} \in \Pi(\overline{x},\overline{y})$ and $\overline{y} \in Tx$. This implies that

 $y \in Tx$, $\phi(\overline{x}, \overline{y}, x) \geqslant \phi(\overline{x}, \overline{y}, \overline{x}) \geqslant 0$ for all $x \in X$.

This completes the proof.

Theorem 2. Let M,N,X,Y,F and α be the same as in theorem 1. Let $\xi: X \times Y \to M^*$ (the dual of M) and $\eta: X \times Y \to M$ be two continuous mappings satisfying the following conditions:

- (i) $\eta(x,x)=0$ for all $x \in X$;
- (ii) for any given $(x,y) \in X \times Y \in \{(x,y), \eta(u,x)\}\$ is quasi -convex in $u \in X$.

Then there exist $\overline{x} \in X$ and $\overline{y} \in F_{\overline{x}} \to \alpha \in X$ such that symmedian variational inequalities

$$\langle \xi(\overline{x},\overline{y}), \eta(x,\overline{x}) \rangle \geqslant 0$$
 for all $x \in X$.

Proof. Taking $\Phi(x,y,x) = \langle \xi(x,y), \eta(u,x) \rangle$ in theorem 1, the conclusion follows from Theorem 1 immediately.

Theorem 3. Let M be a reflexive Banach space, N a quasi-complete locally convex Hansdorff topological vector space and X CM and Y CN be two nonempty close convex subsets. Let $F: X \to \mathcal{F}(y)$ be a convex fuzzy mapping and $F_{\infty}(y): X \times Y \to [0,1]$ as a function of (x,y) be upper semi-continuous in the weak topology of X and the topology of Y. Let $\alpha: X \to (0,1]$ be weakly lower semi-continuous. Suppose further that for each $x \in X$, (F_{∞}) is a nonempty compact subset of Y and that $\xi: X \times Y \to M$ is continuous from the weak topology of X and topology of Y to the norm topology of M. Suppose that $\eta: X \times Y \to M$ is a weakly continuous function satisfying the following conditions:

- (i) $\eta(x,x)=0$ for all $x \in X$;
- (ii) for any $(x,y) \in X \times Y \times \xi(x,y)$, $\eta(u,x) > is convex in <math>u \in X$;
 - (iii) there exists an $\overline{u} \in X$, $\| \overline{u} \| < r$ such that for any $x \in X$, $\| x \| = r$

$$\max_{\mathbf{x}} \langle \xi(\mathbf{x}, \mathbf{y}), \eta(\overline{\mathbf{u}}, \mathbf{x}) \rangle \leq 0.$$
 (2.2)

Then there exist $x\in X$ and $\overline{y}\in (F_{\overline{x}})_{|\alpha|}(F_{\overline{x}})$ such that symmedian veriational inequalities

$$\langle \xi(x,y), \eta(x,x) \rangle \geqslant 0$$
 for all $x \in X$. (2.3)

Proof. Let the mapping $T: X \to z^y$ be definde by $Tx = (F_x)_{\alpha < x}$. BY the assumptions and lemma 1, $T: X \to z^y$ is a mapping with nonempty compact convex values and it is upper semi-continuous from the weak topology of X to the topology of Y. Denote $X_r = X \cap B_r(0)$, where $B_r(0) = \{x \in M: ||x|| \le r\}$, then X_r is a weakly compact convex subset of X. Letting

$$\phi(x,y,u)=\langle \xi(x,y), \eta(u,x)\rangle,$$

then $\Phi: X_r \times Y \times X_r \to R$ is a continuous function in the weak topology of X_r to the topology of Y. By Theorem 1, there exist $x \in X_r$, $y \in (F_x)_{\alpha \in x}$ such that

$$\langle \xi(\overline{x},\overline{y}), \eta(\overline{x},\overline{x}) \rangle \geqslant 0$$
 for all $x \in X_r$ (2.4)

In the sequel, we shall discuss two cases:

(a). If $\|\overline{x}\| = r$, by condition (iii) and (2.4) we have $\langle \xi(\overline{x}, \overline{y}), \eta(\overline{u}, \overline{x}) \rangle = 0$ (2.5)

Hence for any given $x \in X$, taking $\lambda \in (0,1)$ which is little enough such that $w = \lambda x + (1-\lambda)\overline{u} \in X_r$, from (2.4) we have

 $0 \le \langle \xi(\overline{x}, \overline{y}), \eta(w, \overline{x}) \rangle \text{ (by condition (ii))}$ $\le \lambda \langle \xi(\overline{x}, \overline{y}), \eta(x, \overline{x}) \rangle + (1 - \lambda) \langle \xi(\overline{x}, \overline{y}), \eta(\overline{u}, \overline{x}) \rangle$ $= \lambda \langle \xi(\overline{x}, \overline{y}), \eta(\overline{x}, \overline{x}) \rangle.$

(b). If $\|\overline{x}\| \le r$, then for $x \in X$, taking $\lambda \in (0,1)$ which is little enough such that $Z = \lambda x + (1 - \lambda) |\overline{x} \in X_r$. By the same way as in (a), we can prove that

 $0 \le \lambda < \xi(\overline{x}, \overline{y}), \eta(x, \overline{x}) >$.

This completes the proof.

References

- [1] J.P.Allbin and I.Ekeland, Applied nonlinear Analysis, Jhon Wiley and sons, 1984.
- [23] Shih-sen chang and yuan-guo zhu, On vaviational inequalities for fuzzy mappings, Fuzzy sets and systems 32 (1989),359-367.
- [3] Shih-sen chang, Variational Inequality and Complementarity problem Theory and Applications, shanghai Scientific and Technological literathre publishing House, shanghai, 1991.