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Abstract: Borel —Cantelli’s lemma with respect to ga—measures has been dis-
cussed in [5] and [11] when A<C0. In this paper,the lemma is obtained by different
way when A0 and some results with respect to ga—independent events ,such as the
analogues of the Borel zero—one criterion and the Kolmogorov zero—one law,ect. ,
are established. In addition, we discuss the relationships between superadditive (sub-
additive) measures and belief (plausibility) functions,respectively.

keywords: g, —measure;subadditive (superadditive) measure; g, — indepen-

dence ;zero—one law.

1. Introduction

The concept of gx—meaasures,which drop the addity property and use the A—
additivity (see[6]) instead,was initiated by Sugeno. [9]. The concept of g,—indepen-
dence of two sets was introduced by Kruse [8]. The notion of similarity, g,—inden-
pendent class,as a generalization of above concept,was defined by Hua[5] :ind Zhang
[11]Jand Borel —Cantelli’s lemma with respect to gr—measures has been discussed by
Hua [5] when A<<0. But a general lemma,A70,is still lacking. Our main goal in this
paper is to presente another proof of Borel —Cantelli’s lemma and some zero — one
law for ga—independent events when A70.

In Setion 2, we discuss some elemental properties of g, — measures such as

countably A —subadditivity and the convergence or divergence of the series E 2
n=]

(Aq). In this section we also introduce the notion of subadditive and superadditive
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measure and study the relationships between superadditive (suBadditive) measures
and belief (plausibility) functions,respectively.

In Section 3,we introduce the notion of gi—indenpendent class and discuss its
proerties. Furthermore, we obtain some results similar to classical probability theo-
ry, such as Borel — Cantelli’s lemma, the Borel zero — one criterion and the Kol-
mogorov zero—one law,etc.

Throughout this paper,X denotes a nonempty set,.2 a c—algebra on X and the

pair (X,2) a measurable space. We conventionalize that A€ (—1,+o0).

2. Properties of the series composed of g,—measure —values

Definition 2.1 [9]. A set function g, from X to [0,1] is called a g, —measure on
(X,),if it satisfies the following conditions:

(D g2 (B)=0, ;2 (X)=1;

(2) A,BE &, ANB=Z=>an(AUB) =g (A)+ sx(B)+Xx g@a(A) ga(B);

(3) {Ansn=21}C @ And A(AL v A)2limnew ga(An) = gr(AD.

Obviously, a ga—measure on (X, &) is monotone ,that is . g (A)<< g, (B)
whenever ACB,A,BE &, and the equality g@n(A—B)=(ga(A)— gx(B))/ (1+A g
(B)) holds for any sets A,BE .« and BCA. Moreover,g,—measures are probability
measures when A=0. The properties of g,—measures on (X,.2) have been investi-
gated in [3,4,6,11],etc. Here we recall some results which are useful in the follow-
ing discussion.

Propeosition 2. 1{3],Let g\ be ga—measure on (X,.@),then for every sequence

{A.,n=>1} of disjoint sets in & we have

L] Q+reA)—1] A0, (countably A—additivity)
n=1

a(UAn=

a=]

PN A=0,

n=]

Proposition 2. 2[6]. If g\ is a gai—measure on (X,@),and A70,then

g°: = log+.(1 + Ag)
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is a probability measure on (X, ). Conversely,if g° is a probability measure on
(X, ,then
g =— A1 427N + HF
is a ga—measure on (X,&).
Now we introduce the notions of countably A —subadditivity,subadditivity and
superadditivity.

Proposition 2. 3. Let g\ be a gy —measure on (X,2),let A70 and let {Ax ,n>

1} be arbitrary sequence of sets in & ,then for all A€ & with AC D A.,we have

n=]

<A a+2g(A0) 1] (countably A—subadditivity).
n-—1
Proof. Let A= and B.=A.,— (U Ad,n=1,2,-. Obviously,B.CA.,n=1,
i=0

2,,BiNB=4,i7j and D A= D B.,whenec by countably A—additivily and mono-
n=1

n=]

tonicity of gi,we get

£:(A) = (AN (UA) =2 [J[ A + dgi(B. N 4)) — 1]

n=]

<Al a+ agad) — 11

nax]

Definition 2. 2 . A nonnegative set function g on (X,.&) is called subadditive if
for any sets A,B€ <,
g(AU B) < g(A) + g(B)
A nonnegative set function g on (X, is called superadditive if for any sets A,B&
& ,and A(NB=J
g(AU B) =2 g(A) + g(B)
By this definition we can obtain the following propositions immediately.
Proposition 2. 4. If g is subadditive ,then for arbitrary positive integer n, {A;,1

<ikn ) Coe,

g(UA) < T gAn.

=]

If g is superadditive,then for arbitrary positive integer n,disjoint sets {A;,1<i<n}
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c,

g(UA) > g4,

fam]

Propesition 2. 5. If g is subadditive and continuous from below ,i. e. for any in-
creasing sequence {B.,n=1} of sets in & ,limacg(Bs) =g (limn—~wBa) sthen for any
sequence{A,,n=>1} of sets in &,

g(UA) < Y g4,

n=]

If g is superadditive and continuous from below, then for any sequence {A, ,n=1}

of disjoint sets in &7,

g(UA) > 3 gcan.

nu]

Propsition 2. 6, If g, is a ga—measure on (X,.2) ,then g, is subadditive iff A<C0
and it is superadditive iff A=>0. |

Now we recall two concepts and a result from [1]:

Definition 2. 3. A belief function on (X, is a set function Bel : . —{0,1]
satisfying \

(1)Bel (D) = 0,Bel (X) =1

D Vn>land (A1 <i<n} C &

Bl (UAD> > (= DUBel(AD.

=l 1C{1,2, 0}, 1=

A plausibility function on (X, is a set function Pl:.—[0,1] satisfying
() PI(Z)=0.PIX)=1,
(2) ¥ n>1 and {A;,1<i<n}C

Pl (NAD= 20 (—DW-PI(YAD.
im1 IC{1,2,n) 1= i€l
Proposition 2. 7. Suppose g, is a gy —measure on (X, &), Then g\ is a belief
function iff A=>0 and it is a plausibity function iff A<J0.
Applying Proposition 2. 6 and Proposition 2. 7,we can obtain the following theo-
rem immediately.

Theorem 2. 1. Suppose g, is a ga—measure on (X,2 ). Then g, is a belief func-

tion iff it is superadditive and g, is a plausibility function iff it is subadditive.
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In order to prove the main theorem in this section,first we give the following
lemma.
Lemma 2. 1. For arbitrary real number x€ [0,1],the following inequalities hold

(1> logiy(1+Ax)<x and x<log 2 (14+2x), —1<A<0

XZ
In(14+2)
Afx

In(1+2)’
Proof. Let f(x)=log,x(1+Ax)—x , x€[0,1]. We can verify that f(x) is a

(2) x<logi+1(1+2x) and log, 1 (1+Ax)< A>0.

convex function for every parameter A€ (—1,0). Thus for arbitrary s,t& [O,lj and
x,y=0, x+y=1,we have

flas + y0) < 2f () + yf (@,
Now we choose s=1,t=0, then

F@) < zf(0) + 3yf(Q) =0.
This implies that the inequality log;...(1+Ax)<x holds for all xE [0,1],a€ (—1,
0). We can also verify that —f(x) is a convex function for every parameter A>0.
Analogously we can prove that the inequality x<Clog,+a(1+Xx) holds for all x€ [0,
17.43>0. |

If A>0 ,by the mean value theorem,we get

Alx 1
1+ 0Az In(1 + A)

10g1+,1(.1 + Ax) = lOgH..,\(l -+ AI) - log1+,11 = (0 < 0 <D

Since 1+0Ax=>=1,this implies that the inequality

Alx

log (1 + Ax) < n(l+ D

holds for all x€ [0,1],2A>0. Analogously,the follbwing inequality can be proved

Xz |
1n(1+x)<l"gl+*(1‘f"‘1)’ z € [0,1], —1<A<O.

and the lemma is proved.
From Lemma 2. 1 we can immediately present the main theorem in this section .

Theorem 2. 2. Suppose giis a gx—measure on(X,.2) and g\ as in Proposition

2.2, then for every sequence {A.,n=>1} of sets in .& and A0

1 Z;gx(An)<00 i D (AL)<oo,

n=]
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() Dg(A)=c0 iff Elg{ (A.)=co.

n=1

3. gx‘— Independence events

Throughout this section,we shall assume that A70. We recall the following def-
inition from[8]. .

Definition 3. 1. Let g\ be a ga— measure on (X,&). Sets A and B in & are
called gi—independent iff

Zi(A (] B) = — A1+ A7H(1 4 A)enalitin o [+ 5]
Obviously, A and B are g,—independent iff
logi (1 + Aga(A N BY] = logiall + Ag(A) Jlog 4.[1 + Agi(B)Y]

Proposition 3.1. If A€ & and ga(A)=0 or 1, then for arbitrary B€ &, A and
B are gy—independent. ‘

Proof. If ga(A)=0, it follows from 0<<gi(ANB)<g(A) that

Zi(AN B) =0 =— A" 4 A71(1 + A)ln-iliiaDlos, Cltie B0

If g2(A)=1,then gi(A®) =0 and OC@ (ABY<<ga(A°) =0, where A°denotes the com-
plement of A.Hence gi(A°B)=0. Thus using Proposition 2.2 we have

_ a(B) — @AB)
gGAN B =g —ad

=— A"! _*_'/\'-1(1 + A)Iog,+,[1+Ag,(A)]logl_,[1+Ag‘(B)]

This completes the proof of Proposition 3. 1.

Proposition 3. 2. Set A is ga—independent of itself iff ga(A)=0or 1.

Proof. By Proposition 3.1 we can easily prove the proposition of sufficiency. If
A and A are ga—indepentent, then

log\+:[1 + _XgA(A)] = (log,+:[1 + Aga(A) ])?

that is. g¢ (A)=(g’ (A))?* or | gr (A)(1—gr (A))=0.Hence gy (A)=log;n[1
+2g:(A)]=0 or 1. And this implies g.(A)=0 or 1. This has proved the proposition
of necessity.

Now we generalize the concept which two sets are gy —independent to that of g
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—independent classes.
Definition 3. 2. If g, is ga—measure on(X, &) and T a non—empty index set,
classes &, of sets in .&@,t € T are called gy —independent if for each integer n=>2,

each choice of distinct t:€ T ,and sets Ai€ &, ,1<<i<n,

logina[1 + Ag:(NANT = T[loginul1 + Agi(AD]

=1

Sets {A.,t€ T}C & are called g.—independent if the one —element classes &=
{A.}t€T,are g;—independeht.

Obviously ,non—empty ‘subclasses of ga—independent classes are likenwise ga—
independent claeese. Conversely, if for every non —empty finite subset T, T, the
classes &,,t€ T ,are g,—independent,then so are the classes &, ,t € T.

Z"h e or e m 3.1(Extension theorem of g,—independent classes). Suppose
{<.,t €T} are ga—independent classes. If ,for every tE T, & is a n—class,i.e. & is
closed under the formation of finite intersections, then {c(&.) ,téT } are also gi—
independent classes,where 0(&,) denotes the s—algebra generated by &..

Proof. See[5,12].

An immediate consequen of the above theorem is the following .

Corollary 3.1 Sets {A,,tE€ T}C .o are gi—independent iff the classes & .= {J,
XA, Af} are ga—independent.

Theorem 3. 2 (Borel —Cantelli lemma). Let g;v be a g;—méasure on(X, 2 )and

let {A.,n=1} be a sequence of sets in 2.
D I Zlgx(A..)<°O,then g:(lim supA,)=0.

(OIf {Anyn=1} are ga—independent and ng(An)=°°,then g (lim supA,) =

na=] N0

Proof. (1). On the one hand,by Corollary 2.1, we have

TI01 + AgaAD] < oo

n=1]

On the other hand.,if H [1+2g(A.)]=0,then
n=]



41

Zlogl+a((1 + A (A)) = Eg; (A,) = o

na=] ne]

This contradicts that gy’ is a probability measure on (X,2). This contradiction indi-
cates that H ((14+2ga(A.))F#0. Therefore the infinite product l_Ji- ((A+Ag(AL)) is
n=] na=

converge and lim II (A+2rg(AD))=1.

k—eco nmk

Hence,it follows from Proposition 2. 3 that

gillim supA,) = limg(U (40) <lima [ J[ A + 4gi(4) — 1]

—O
" ek

And (1) holds.

(2) Obviously,for arbitrary integer m>1, { Ax E]HAE,k =1,2,-,m—1} are

n

m «~ m=—]
disjoint sets in & and U An:)kUl.(Ak

n=]

fl A3) . Using Proposition 2. 2, Corollary 3.1
e 1

n

and Definition 3. 2 for abritrary integer m_—>1,we get

1> logi[1 + Agi( L:JlAn)]

m—1
= log {1 + "gi\[‘gl (Ax

n

m m—l m
N AN} = D logiw[1 + Agi(A: N AD]
=k+1 =1 =k+1

n

m—1 m .
= 2108'14-1[1 + Ag:(AD] * log1a[1 + Agu( QHA:)]
k=] n=

m—1

= Elo.guxﬁ + Ag:(AD] » logia[1 + Agu( OHA:)J
=1 : n=
implying
1= Zl(’ng{l + Ag(AD] + log+i[1 + Aga( Fi_lAf-)]
k=] n=

By Theorem 2. 2, Zlog1+1[1+}\gx(An)]=oo . Therefore divergence of the series re-
n==} )

quires

fz’mlogl.,.,‘l:l + Aga( OHAf.)] =0

and so

limg,( ﬁ A) =0
h——oo n==k41
Hence we have
gillim supA,) = fimga( D/.A")

n—=co
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= tim[1 — e N ADT/[1 + Ag(N4D] =1
And the proof of theorem is completed.
As an immediate consequence of Theorem 3. 2,we have the following corollary
Corollary 3.2 (Borel Zero—One Criterion ). Let gi be a ga—measure on(X,.&)

and let the sets {A,,n=>1}C .« be g,—independent. Then

(1) g (lim supA.) =0 iff Elgx(An)<°°

n—>00

(2) ga(lim supA.) =1 iff 2 g(A,) =00

n—+o00 n=1]

Theorem 3. 3. (Kolmogorov Zero—One Law). Let gi be a ga—measure on (X,

) and let the sets {A,,n=1}C & be gi—independent. Then for each A& ﬁ ¢

na=]
(AnsAcii1s)ga(A)=00r 1 ,where 6(An,Ant1s--*) denotes the o—aigebra generat-
ed by the sets An,Anyys .
Proof. Let &, = {all finite intersections of sets in {An,Ant,***}},for arbitrary

integer n=>1. It is easy to show that ., are ga»—independent classes. By Theorem 3.

1,{c(A))s0(A;)y+a(A,) y0( ) =0(A,,Ant1s**)} are also ga—independent class-

es. If Aeﬁl"(An’AnH"")' then A €a(A,,Ans1s°e) and therefor the sets {A,,A,,
«+A,_;+A} are g;—independent. From the remark below Definition 3. 2,the sets{A,
A,,A,;,+} are ga—independent. Using the same way as stated above we can prove
that 6(A),0(A,;A;,++ ),are ga—independent classes. But A€ o(A;,A;, * J.from A
€0(A) and AEc(A,,A,,+ ) it follows that A is ga—independent of itself. Hence,

by Proposition 3.2. gin(A)=0 or 1,and we finishes the proof of theorem.

By Theorem 3. 3 and lim supA,= ﬁ GkA',.G ﬁlo(Aqu,"' ), we immediately

n—co k=1in=

get the following
Theorem 3. 4 (Borel Zero—One Law). Let g, be a gi—measure on(X,.&) and

let {A.,n>=1}C .« be ga—independent. Then g,(lim supA,)=0 or 1.

n—=oo
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