FUZZY Sz-PRE-SEMICONTINUITY

Bai Shi-Zhong

Department of Mathematics, Yanan University, Yanan, China

ABSTRACT

In this paper, we introduce and study the fuzzy S_z -pre-semicontinuous mapping in fuzzy topological spaces.

Key words: Fuzzy pre-semiopen sets; fuzzy semiopen sets; fuzzy S_2 -pre-semicontinuous mappings.

1. PRELIMINARIES

In this paper, A° , A^{-} , A_{\circ} , A_{\circ

2. FUZZY Sz-PRE-SEMICONTINUOUS MAPPINGS

Definition 2.1. Let $f:(X,\delta) \to (Y,\tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is called a fuzzy S_2 -pre-semicontinuous mapping if $f^{-1}(B)$ is a fuzzy pre-semiopen set of X for each fuzzy

semiopen set B of Y.

Definition 2.2.Let $f: X \rightarrow Y$ be a mapping from a fuzzy space X to another fuzzy space Y, f is said to be fuzzy S_2 -pre-semicontinuous at a fuzzy point p in X, if fuzzy semiopen set B of Y and $f(p) \leq B$, there exists a fuzzy pre-semiopen set A of X such that $p \leq A$ and $f(A) \leq B$.

Theorem 2.3. Let $f: X \rightarrow Y$ be a mapping from a fuzzy space X to another fuzzy space Y. Then the following are equivalent:

- (1) f is fuzzy S2-pre-semicontinuous.
- (2) $f^{-1}(B)$ is a fuzzy pre-semiclosed set of X for each fuzzy semiclosed set B of Y.
 - (3) $f((A^{\circ})_{-}) \leq (f(A))_{-}$ for each fuzzy set A of X.
 - (4) $((f^{-1}(B))^{\circ})_{-} \leq f^{-1}(B_{-})$ for each fuzzy set B of Y.
 - (5) $f^{-1}(B_o) \leq ((f^{-1}(B))^-)_o$ for each fuzzy set B of Y.

Theorem 2.4. A mapping $f:X \to Y$ is fuzzy S_2 -pre-semicontinuous iff f is fuzzy S_2 -pre-semicontinuous for each fuzzy point p in X.

Proof. We prove only sufficiency.

Let B be a fuzzy semiopen set of Y and p be a fuzzy point in $f^{-1}(B)$. Then $p \leqslant f^{-1}(B)$, i.e., $f(p) \leqslant B$. From hypothesis there is a fuzzy presemiopen set A of X such that $p \leqslant A$ and $f(A) \leqslant B$, hence

$$p \leq A \leq f^{-1}f(A) \leq f^{-1}(B)$$

and $p \le A \le (A^-)_{\circ} \le ((f^{-1}(B))^-)_{\circ}$.

Since p is arbitrary and $f^{-1}(B)$ is the union of all fuzzy points in $f^{-1}(B)$, $f^{-1}(B) \leqslant ((f^{-1}(B))^-)_o$, i.e., $f^{-1}(B)$ is a fuzzy pre-semiopen set of X. Thus f is fuzzy S_2 -pre-semicontinuous.

Theorem 2.5. Let $f: X \to Y$ be one-to-one and onto, where X and Y are fuzzy spaces. f is a fuzzy S_2 -pre-semicontinuous mapping iff $(f(A))_o \leqslant f((A^-)_o)$ for each fuzzy set A of X.

Theorem 2.6. Let X_1 , X_2 , Y_1 and Y_2 be fuzzy spaces such that X_1 is product related to X_2 . Then the product $f_1 \times f_2 \colon X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ of fuzzy S_2 -pre-semicontinuous mappings $f_1 \colon X_1 \longrightarrow Y_1$ and $f_2 \colon X_2 \longrightarrow Y_2$ is fuzzy S_2 -pre-semicontinuous.

3. MUTUAL RELATIONSHIPS

Remark 3.1. For the mapping $f: X \rightarrow Y$ the following statements are valid: f is fuzzy irresolute => f is fuzzy S_2 -pre-semicontinuous =>f is fuzzy S_1 -pre-semicontinuous.

None is reversible.

Example 3.2. Let $X=\{a, b, c\}$, and A, B, C be fuzzy sets of X defined as follows:

$$A(a)=0.4$$
, $A(b)=0.5$, $A(c)=0.3$; $B(a)=0.2$, $B(b)=0.3$, $B(c)=0$; $C(a)=0.5$, $C(b)=0.5$, $C(c)=0.5$.

- (1) Let $\delta = \{0, A, 1\}$, and $\tau = \{0, B, A, 1\}$. Consider the identity mapping $f: (X, \delta) \rightarrow (X, \tau)$. Then f is fuzzy S_2 -pre-semicontinuous. Clearly f is not fuzzy irresolute mapping.
- (2) Let $\delta = \{0, B, C, 1\}$ and $\tau = \{0, A, 1\}$. Consider the identity mapping $f: (X, \delta) \longrightarrow (X, \tau)$. Then f is fuzzy S_1 -pre-semicontinuous. But f is not fuzzy S_2 -pre-semicontinuous.

Proposition 3.3. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be mappings. Then the following statements are valid:

- (1) If f is fuzzy S_2 -pre-semicontinuous and g is fuzzy irresolute, then gof is fuzzy S_2 -pre-semicontinuous.
- (2) If f is fuzzy S_2 -pre-semicontinuous and g is fuzzy weakly irresolute, then gof is fuzzy S_1 -pre-semicontinuous.

REFERENCES

- [1] K.K.Azad, J. Math. Anal. Appl. 82(1981) 14-32.
- [2] Bai Shi-Zhong, Fuzzy Sets and Systems, 52(1992) 345-351.
- [3] Bai Shi-Zhong, ICIS'92, 918-920.
- [4] Bai Shi-Zhong, BUSEFAL, in press.
- [5] C.L.Chang, J. Math. Anal. Appl. 24(1968) 182-190.
- [6] Pu Pao-Ming and Liu Ying-Ming, J.Math.Anal.Appl.76(1980)571-599.