FUZZY S1-PRE-SEMICONTINUITY

Bai Shi-Zhong

Department of Mathematics, Yanan University, Yanan, China

ABSTRACT

Fuzzy continuous and its weaker forms constitute an important area in the field of fuzzy topology(cf.[1-7]). In this paper, we introduce and study the fuzzy S_1 -pre-semicontinuous mapping in fuzzy topological spaces.

Key words: Fuzzy pre-semiopen sets; fuzzy strongly semiopen sets; fuzzy S₁-pre-semicontinuous mappings.

1. PRELIMINARIES

In this paper, A° , A^{-} , A_{\circ} , A_{-} and A' will denote respectively the interior, closure, semi-interior, semi-closure and complement of the fuzzy set A.

Definition 1.1 $^{(2),3}$ Let A be a fuzzy set of a fuzzy topological space (X,δ) . Then A is called

- (1) a fuzzy pre-semiopen set of X iff $A \leq (A^-)_{\circ}$;
- (2) a fuzzy pre-semiclosed set of X iff $A \ge (A^{\circ})_{-}$;
- (3) a fuzzy strongly semiopen set of X iff there is a $B \in \mathcal{S}$ such that $B \leqslant A \leqslant B^{-\circ}$.
- (4) a fuzzy strongly semiclosed set of X iff there is a fuzzy closed set B in X such that $B^{\circ-} \leq A \leq B$.

Definition 1.2⁽²⁾ Let A be a fuzzy set of a fuzzy space (X,δ) . Then

 $A^{\Delta} = \bigcup \{B: B \leqslant A, B \text{ fuzzy strongly semiopen} \}$ is called the fuzzy strong semi-interior of A and

 $A^{\sim}=\bigcap\{B\colon A\leqslant B, \text{ Bfuzzy strongly semiclosed}\}$ is called the fuzzy strong semi-closure of A.

Definition 1.3^[2,3,4]. Let $f:(X,\delta) \rightarrow (Y,\tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is called

- (1) a fuzzy strongly semicontinuous mapping if $f^{-1}(B)$ is a fuzzy strongly semiopen set of X for each $B \in \tau$.
- (2) a fuzzy pre-semicontinuous mapping if $f^{-1}(B)$ is a fuzzy presemiopen set of X for each $B \in \tau$.
- (3) a fuzzy S-irresolute mapping if $f^{-1}(B)$ is a fuzzy strongly semiopen set of X for each fuzzy strongly semiopen set B of Y.

2. FUZZY S1-PRE-SEMICONTINUOUS MAPPINGS

Definition 2.1. Let $f:(X,\delta) \to (Y,\tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is called a fuzzy S_1 -pre-semicontinuous mapping if $f^{-1}(B)$ is a fuzzy pre-semiopen set of X for each fuzzy strongly semiopen set B of Y.

Definition 2.2. Let $f:(X,\delta) \to (Y,\tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is said to be fuzzy S_1 -pre-semicontinuous at a fuzzy point p in X, if fuzzy strongly semiopen set B of Y and $f(p) \leq B$, there exists a fuzzy pre-semiopen set A of X such that $p \leq A$ and $f(A) \leq B$.

Theorem 2.3. Let $f: (X, \delta) \rightarrow (Y, \tau)$ be a mapping from a fuzzy space X to another fuzzy space Y. Then the following are equivalent:

- (1) f is fuzzy S_1 -pre-semicontinuous.
- (2) $f^{-1}(B)$ is a fuzzy pre-semiclosed set of X for each fuzzy strongly semiclosed set B of Y.
 - (3) $f((A^{\circ})_{-}) \leq (f(A))^{\sim}$ for each fuzzy set A of X.
 - (4) $((f^{-1}(B))^{\circ})_{-} \leq f^{-1}(B^{\sim})$ for each fuzzy set B of Y.
 - (5) $f^{-1}(B^{\Delta}) \leq ((f^{-1}(B))^{-})_{o}$ for each fuzzy set B of Y.
 - (6) f is fuzzy S_1 -pre-semicontinuous for each fuzzy point p in X.

Proof. We prove only (1) <=> (6).

(1)=>(6): Let f be fuzzy S_1 -pre-semicontinuous, p be a fuzzy point in X and B be a fuzzy strongly semiopen set of Y such that $f(P) \leq B$. Then $p \leq f^{-1}(B)$. Let $A = f^{-1}(B)$, then A is fuzzy pre-semiopen set of X, and so $f(A) = ff^{-1}(B) \leq B$. Thus f is fuzzy S_1 -pre-semicontinuous for each fuzzy point p in X.

(6)=>(1): Let B be a fuzzy strongly semiopen set of Y and p be a fuzzy point in $f^{-1}(B)$. Then $p \le f^{-1}(B)$, i.e., $f(p) \le B$. From hypothesis there is a fuzzy pre-semiopen set A of X such that $p \le A$ and $f(A) \le B$, hence

$$p \leq A \leq f^{-1}f(A) \leq f^{-1}(B)$$

and

$$p \le A \le (A^-)_{\circ} \le ((f^{-1}(B))^-)_{\circ}$$

Since p is arbitrary and $f^{-1}(B)$ is the union of all fuzzy points in $f^{-1}(B)$,

$$f^{-1}(B) \leq ((f^{-1}(B))^{-})_{o}$$

i.e., $f^{-1}(B)$ is a fuzzy pre-semiopen set of X. Thus f is fuzzy S_1 -pre-semicontinuous.

Theorem 2.4. Let $f:(X,\delta) \to (Y,\tau)$ be one-to-one and onto, where X and Y are fuzzy spaces. f is a fuzzy S_i -pre-semicontinuous mapping iff $(f(A))^A \leq f((A^-)_o)$ for each fuzzy set A of X.

Theorem 2.5. Let X_1 , X_2 , Y_1 and Y_2 be fuzzy spaces such that X_1 is product related to X_2 . Then the product $f_1 \times f_2: X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ of fuzzy S_1 -pre-semicontinuous mappings $f_1: X_1 \longrightarrow Y_1$ and $f_2: X_2 \longrightarrow Y_2$ is fuzzy S_1 -pre-semicontinuous.

3. MUTUAL RELATIONSHIPS

Remark 3.1. For the mapping $f: X \rightarrow Y$ the following statements are valid:

f is fuzzy S-irresolute

=> f is fuzzy S₁-pre-semicontinuous

=>f is fuzzy pre-semicontinuous.

None is reversible.

Example 3.2. Let $X=\{a, b, c\}$, and A, B, C be fuzzy sets of X defined as follows:

$$A(a)=0.4$$
, $A(b)=0.5$, $A(c)=0.3$;

$$B(a)=0.2$$
, $B(b)=0.3$, $B(c)=0$;

$$C(a)=0.3$$
, $C(b)=0.4$, $C(c)=0.2$,

Let $\delta = \{0, A, 1\}$, and $\tau = \{0, B, A, 1\}$. Consider the identity mapping $f: (X, \delta) \longrightarrow (X, \tau)$. Then f is fuzzy S_1 -pre-semicontinuous. Clearly C is fuzzy strongly semiopen set of (X, τ) . But $f^{-1}(C)$ is not fuzzy strongly semiopen set of (X, δ) . Thus f is not fuzzy S-irresolute mapping.

Example 3.3. Let X={a, b, c}, and A, B, C be fuzzy sets of X defined as follows:

$$A(a)=0.3$$
, $A(b)=0.2$, $A(c)=0.4$;

$$B(a)=0.4$$
, $B(b)=0.2$, $B(c)=0.5$;

$$C(a)=0.2$$
, $C(b)=0.6$, $C(c)=0.4$.

Let $\mathcal{S}=\{0, A, B, 1\}$ and $\tau=\{0, C, 1\}$. Consider the identity mapping $f:(X,\mathcal{S}) \longrightarrow (X,\tau)$. Then f is fuzzy pre-semicontinuous. Clearly A' is fuzzy strongly semiopen set of (X,τ) . But

$$A'=f^{-1}(A') \leqslant ((f^{-1}(A'))^{-})_{o}=(A')^{-})_{o}=(A')_{o}=B'$$

i.e., A' is not fuzzy pre-semiopen set of (X,8). Thus f $\,$ is not fuzzy $S_1\text{-pre-semicontinuous}.$

Proposition 3.4. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be mappings. Then the following statements are valid:

- (1) If f is fuzzy S_1 -pre-semicontinuous and g is fuzzy S-irresolute, then gof is fuzzy S_1 -pre-semicontinuous.
- (2) If f is fuzzy S_1 -pre-semicontinuous and g is fuzzy strongly semicontinuous, then gof is fuzzy pre-semicontinuous.

REFERENCES

- [1] K.K.Azad, J. Math. Anal. Appl. 82(1981) 14-32.
- [2] Bai Shi-Zhong, Fuzzy Sets and Systems, 52(1992) 345-351.
- [3] Bai Shi-Zhong, ICIS'92, 918-920.
- [4] Bai Shi-Zhong, Fuzzy Sets and Systems, in press.
- [5] C.L.Chang, J. Math. Anal. Appl. 24(1968) 182-190.
- [6] Pu Pao-Ming and Liu Ying-Ming, J.Math.Anal.Appl.76(1980)571-599.
- [7] T.H. Yalvac, J. Math. Anal. Appl. 132(1988) 356-364.