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A Note on Fuzzy Volterra Integral Equations
P.V.Subrahmanyam and S.K.Sudarsanam

In this paper existence theorems for certain
Volterra integral equations involving fuzzy set valued mappings
(whose values are normal, convex, upper semicontinuous and compactly

supported fuzzy sets in Rn) are obtained.

1.Introduction : It is known in the literature (see [1] and
[4]) that the Volterra integral equation has a solution under
suitable assumptions. The purpose of this note is to

generalize such existence theorems to fuzzy-valued mappings.

2.Preliminaries By- PK(RH) we denote the family of all
non-empty compact convex subsets of R". Addition and scalar
multiplication in lPK(IRn) are defined as wusual. U denotes  the
closure of U where U is contained in R". Let T be the closed and

bounded interval [a,b] £ R.

Define E" = { u : R —— [0,1] satisfying conditions (a) to (d)

below }

(a) u is normal i.e. 3 xoe.Rn such that u(xo) = 1;

(b) u is fuzzy convex;

(c) u is uppersemicontinuous;

(d) [ul® = { x € R" / ulx) >0 } is compact.
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For 0 < « = 1 denote [u]® = { X € IRn'/ ulx) = « } We have from

(a) to (d) that the a-level sets [u]® e P (R") for all 0 = « = 1.
If g: R" x R® — R" is a function then using
Zadeh’s extension principle we can extend g to E' x E' —— E°

by the equation g(u,v)(z) = sup min (u{x),v(y)). It is well
z=g(x,y)

known that [g(u,v)1% = g([ul%, [(vI1*) for all u,v € E®, 0 = « = 1

and g continuous ( see [S5] ). For addition the above equation
gives [u+v]® = [u]®* + [v]®*. The real numbers can be embedded in
1 - 1 for t=c

E° by the rule ¢ —— c(t) = {0 else where We can also

generalize multiplication by a real number and for any real number
c we get [c ul® = ¢ [ul® where 0 = a = 1 and u e E".

Let D: E" x E® — R" U {0} be defined by

D(u,v) = sup H([u]a, v1%)
0 s o =1
where H is the Hausdorff metric defined in IPK([Rn). Then D is

a metric on E'. Further (E",D) is a cbmplete metric space (see
[2] and [6]). Also D(u+w,v+w) = D(u,v) for every u,v € E.

Furthermore , D(Au,Av) = [A] D(u,v) for every u,v,w € E° and
A € R.

It can be proved straightaway that D(u+v,w+z) =

D(u,w) + D(v,z) where u,v,w,z € E".(The proof is based on the

observation that H(A + A ,B + B) = H(A ,B ) + H(A,B ) where
1 2’71 2 1’71 2’ 2

H is the Hausdorff metric on IPKUR") induced by the norm in R".)

Definition 2.1 : (see [3]) A mapping F : T —— E" is strongly
measurable if for all « € [0,1] the set-valued map Foc (T ——
IPK(IRn) defined by Fa(t) = [F(t)1% is Lesbegue measurable when

IPK(IRn) has the topology induced by the Hausdorff metric H.
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Definition 2.2 : (see [3]) Amap F: T —— E" is said to be
integrably bounded if there is an integrable function h such that
I x Il = h(t) for every x € Fo(t).

It was proved by Puri and Ralescu [6] that a
n

strongly measurable and integrably bounded mapping F : T —— E

is integrable. [i.e. I F(t) dt € E" ].
T -

For the proofs of the following theorems [3] may be referred.

Theorem 2.1 : If F: T —> E' is continuous then it is
integrable. ‘

Theorem 2.2 : Let F,G : T —— E" be integrable and A € R.
Then

(1) [ (Fe6) = [Fe K

(ii) I AF =a[F

(iii) D(F,G) is integrable

(iv) D[ f F, I G’] = j D(F, G)

3. Existence theorems :

Theorem 3.1 : Consider the following non-linear fuzzy-valued

Volterra integral equation
t
x(t) = £(t) + I g(t,s,x(s)) ds (1)
]

We make the following assumptions: -

Let a,b and L be positive numbers and for some

fixed « € (0,1) define ¢ =a / L.
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Suppose (i) f : [0,a] — E" continuous.

(ii) g : U —— E" continuous where U = {(t,s,x) /0=s=t=a,
x € E' and D(x,f(t)) = b }.

(iii) g satisfies Lipschitz condition with respect to x on U
i.e D( g(t,s,x), g(t,s,y) ) = L D(x,y) if (t,s,x),(t,s,y) € U. If
M = max D( g(t,s,x), 5 ), then there is a unique solution of (1)

on [0,T] where T = min [ a, b/M, c ].

Proof : Let C be the space of continuous functions from [0, T]

into (E",D) with Hl(w,f) = b i.e. C ={ y /¢y : [0,T] — E"

continuous and H1(w’f) = b} where Hl(w,f) = sup D(y(t),f(t))
0=t=T

where D is as defined earlier.

Define an operator A : ¢ —— C by

t
AU(t) = £(t) + J g(t,s,y(s)) ds
0

To prove that A : C —— C we have to prove that Ay is
continuous whenever ¥ € € and that Hl(Aw,f) = b.

Consider D(Ay(t+h), Ay(t))
t+h t
D[f(t+h) + J g(t+h,s,y(s)) ds, f(t) + f g(t,s,y(s)) ds]

o] [¢]

t+h t
D(£(t+h), £(t)) + D[ [ etten 5wt as, [ gtt,s,uis)) ds]

0 0

1A

t t

g + D{ J g(t+h,s,y(s)) ds, I g(t,s,y(s)) ds] +

o] 0

IA

t+h

D[ I g(t+h, s,y (s)) ds, 0 ]
t
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( The first term on the right hand side is less than £/2 as f is

continuoous at any t € [0,T] )

t
=5 + [ Dlgltn, s,u(s)),8(t,5,u(s))) ds +
° t+h
ID(g(‘Hh,s,w(s)),a) ds ..... (1)

t

Clearly the right hand side of (I) tends to zero as h —— 0.
So AY is continuous.

Consider Hl(Aw,f) = sup D(AyY(t),f(t))
0St =T

t+
sup D(£(t) + I g(t,s,w(s))ds, £(t))
O=t=T 0

t

sup D(f g(t,s,w(s))ds,a)
O=t=T

0
t

sup J D(g(t,s,W(s),a)ds
0

1A

O=t=T

1A

MT=bD
So Ay e C . A maps C into itself.
We show that € 1is a closed subset of C([0,T],E'), a complete
metric space with the metric Hi(see [31).

Let (wn) be a sequence in C converging to Y in
C([0,T1,E®). Consider H ) =H (.9 +H@,f)

=g +b

for sufficiently large n and all positive e. So ¢y € C . This
implies that C is a closed subset of C([0,T],E"). Therefore C is
a complete ﬁetric space.
We prove that A is a contraction mapping.

For ¢,y € C, Hl(A¢,Aw) = sup D(A¢(t),Ay(t))
OSt=T
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t t
= sup D[f(t)+jg(t,s,¢(s))ds,f(t)+jg(t,s,w(s))ds]
0St=T o o
t t
=  sup D[ Jg(t,s,¢(s))ds, Ig(t,s,W(s))ds ]
O=<t=T o 0

t

< sw | D[g(t,s,¢(s)),g(t,s,w(s))]ds

0=t=T 0
t
=  sup f L D(¢(s),y(s))ds in view of (iii)
0=t=T 0

<TL H1(¢,w)

=clL H1(¢,w1 =« H1(¢,¢) where a € (0,1).
So A: € —— C is a contraction map. Since € 1is a complete
metric space and A is a contracting self-map on C, it has a unique
fixed point x € C. This fixed point is the required unique

solution to the equation (1).

We consider now the fuzzy Volterra integral equation

t
x(t) = A I K(t,s) x(s) ds + ¢(t) (2)
a
Theorem 3.2 : Suppose K(t,s) :[a,b] x [a,b] —— R and
¢ : la,b] —— E" be given continuous functions and A an

arbitrary parameter. If [K(t,s)] = M for all a < t,s = b then the

equation (2) has a unique fuzzy-valued solution.

Proof : Let T be a closed interval [a,b]. Define G on

C(T,E™) by

t
Gx(t) = 2 j K(t,s) x(s) ds + ¢(t)
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It is easy to see that Gx is continuous whenever x e C(T,En). So
Gx € C(T,E") whenever x € C(T,E").
Now let XX € C(T,E")

Consider D(le(t),ze(t)) which is

t t
D[ A J.K(t,s)xl(s) ds + ¢(t),A JK(t,s)xz(s) ds + ¢(t)]

t t
=a| D[ fK(t,s)xl(s) ds,IK(t,s)xz(s) ds]
a a

1A

t
N ID[K(t,s)xl(s),K(t,s)xz(s)] ds

1A

t
Al M .[D[xl(s),xz(s)] ds

1A

Al M (t-a) H1(x1’x2)

A2 M (t-a)?

Similarly D| G%x (t),G%x (t)| = H (x,%x )
1 2 21 1 1 2
So inductively for all n,
. . A" M (b-a)”
D[ le(t),ze(t)] < - H (x % )
A1 M (b-a)"
= H [an ,G™x ] = H (x,x)
1 1 2 n! 1 1" 2

So given any A, we can always choose n large enough to make

Al M (b-a)"

< 1. Thus G" is a contraction mapping whenever n
n!

is sufficiently large. So by Banach’s contraction principle, the

Fuzzy Volterra integral equation (2) has a unique solution.
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Example 3.1 : Let K(t,s)} = sin(t) cos(s) and

£ : [2,3] ——— E' be a function defined by

xt if x e [0, (1/t)]
1 if x e [(1/t),1-(1/t)]
(1-x)t if x e [1-(1/t),1]

f{t)(x) =
0 otherwise

Then [£(t)]1% = [(a/t) , 1-(a/t)] for 0 < « = 1 and

(£(t)1° = [0,1]. It is easy to check that the fuzzy function
f: [2,3] —— E1 defined above is a continuous fuzzy function.

Then our existence theorem states that the fuzzy Volterra equation
t
x(t) =2 [K(t,s) x(s) ds + £(t)
2

has a unique fuzzy-valued solution for any A.
One may also choose f(t) = r(t) + A as considered by

Kaleva ( see example 5.1 [3] ) where A € E" is fixed.
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