SOME MODAL TYPE OF OPERATORS IN INTUITIONISTIC FUZZY MODAL LOGIC

Part. II

Krassimir T. Atanassov

Math. Research Lab. - IPACT, P.O.Box 12, Sofia-1113, BULGARIA

Following the ideas and using the notation from [1-3], we shall define some new operators over the Intuitionistic Fuzzy Modal Logic (IFML) (cf. [4-7]).

Let everywhere A be a given propositional form (c.f. [8]: each proposition is a propositional form; if A is a propositional form then $\neg A$ is a propositional form; if A and B are propositional forms, then A & B, A \vee B, A \supset B are propositional forms) and let $V(A) = \langle a, b \rangle$, where a, b \in [0, 1] and a + b \leq 1.

Firstly, we shall define the following two operators:

$$V(P(A)) = (max(\alpha, a), min(\beta, b)),$$

$$V(Q_{\alpha, \beta}(A)) = \langle min(\alpha, a), max(\beta, b) \rangle.$$

Obviously, for operators "!" and "?" from [i], for which

$$V(!(A)) = \langle \max(1/2, a), \min(1/2, a),$$

$$V(?(A)) = \langle min(1/2, a), max(1/2, a),$$

it is valid that:

$$!(A) = P (A), 1/2$$

$$?(A) = Q (A).$$

Let

$$P_{\alpha, \beta}(V(A)) = V(P_{\alpha, \beta}(A)),$$

$$Q_{\alpha, \beta}(V(A)) = V(Q_{\alpha, \beta}(A)).$$

We must note, that for every propositional form A

$$V(P(A)) = V(A) \times \langle \alpha, \beta \rangle$$

and

$$V(Q_{\alpha, \beta}(A)) = V(A) & \langle \alpha, \beta \rangle.$$

THEOREM 1: For every propositional form A and for every α , β , Γ , $\delta \in [0, 1]$, such that $\alpha + \beta \leq 1$, $\Gamma + \delta \leq 1$:

(a)
$$V(P_{\alpha, \beta}(A)) = V(Q_{\beta, \alpha}(A));$$

(b)
$$V(P (Q (A))) = V(Q (P (A)));$$

 $\alpha, \beta, \gamma, \delta, \alpha, \beta, \alpha, \beta$

(d)
$$V(P(A)) = V(P(A)) = V(P(A));$$

(e)
$$V(Q (A)) = V(Q (A))$$

 $\alpha, \beta, \beta, \delta, \delta = \min(\alpha, \beta, \delta)$

Proof: (b) V(P (Q (A))) α, β Γ, δ

=
$$V(P_{\alpha, \beta}(\langle min(\Gamma, a), max(d, b) \rangle)$$

= $\langle \max(\alpha, \min(\Gamma, a)), \min(\beta, \max(\delta, b)) \rangle$

=
$$\langle x, \min(\max(\alpha, \beta), \max(\alpha, a)), \max(\min(\beta, \delta), \max(\beta, a)) \rangle$$

= Q
$$(\langle \max(\alpha, a), \max(\beta, b) \rangle)$$
 $\max(\alpha, \beta, \beta)$

=
$$Q$$
 (P (A)).
max(α , Γ), min(β , δ) α , β

THEOREM 2: For every two propositional forms A and and B and for every α , $\beta \in [0, 1]$, such that $\alpha + \beta \le 1$:

(a)
$$P$$
 (A & B) = P (A) & P (B), α , β

(b)
$$P$$
 $(A \times B) = P$ $(A) \times P$ (B) ,

(c)
$$Q$$
 (A & B) = Q (A) & Q (B), α , β

(d)
$$Q$$
 $(A \times B) = Q$ $(A) \times Q$ (B) .

* *

The operators Z , Y , Y , Y from [3] can be transformed over α α α , β

IFL. They have the following forms:

$$Z_{\alpha}(A) = \begin{cases} A, & \text{if } a = \alpha.b \\ F, & \text{otherwise} \end{cases}$$

$$Y_{\alpha}(A) = \begin{cases} A, & \text{if } a \geq \alpha, b \\ F, & \text{otherwise} \end{cases}$$

$$\beta \\
Y (A) = \begin{cases}
A, & \text{if } a \leq \beta.b \\
F, & \text{otherwise}
\end{cases}$$

$$Y_{\alpha, \beta}(A) = \begin{cases} A, & \text{if } \alpha.b \leq a \leq \beta.b \\ F, & \text{otherwise} \end{cases}$$

where F is the logical false.

We can define analogical operators (with the same notations) over a set S of propositional forms by:

$$Z_{\alpha}(S) = \{A / Z_{\alpha}(A) = A\},\$$
 $Y_{\alpha}(S) = \{A / Y_{\alpha}(A) = A\},\$
 $X_{\alpha}(S) = \{A / Y_{\alpha}(A) = A\},\$
 $X_{\alpha}(S) = \{A / Y_{\alpha}(A) = A\},\$
 $X_{\alpha}(S) = \{A / Y_{\alpha}(A) = A\}.\$

Following [i] we can define for an IFS A over E the set

$$\square A = \{\langle x, a, i - a \rangle / x \in E\}.$$

For the needs of the discussion below we shall define the notion of intuitionistic fuzzy tautology (IFT) and Intuitionistic fuzzy Safety (IS) by:

"A is an IFT" iff "if $V(A) = \langle a, b \rangle$, then $a \geq b$ ".

"A is an IS" iff "if $V(A) = \langle a, b \rangle$, then $a \geq 1/2$ ".

Obviously, if A is an IS, then A is an IFT.

THEOREM 3: (a) Z (S) is a set of IFTs iff $\alpha \geq 1$.

(b) $Z_{\alpha}(\square S)$ is a set of ISs iff $\alpha \ge 1$.

Proof: Let Z (S) be a set of ITSs, i.e., for every A \in Z (S), if

 $V(A) = \langle a, b \rangle$, then $a \geq b$. On the other hand, $a = \alpha.b$. Therefore $\alpha \geq 1$. The opposite one can see directly.

(b) is proved analogically.

THEOREM 4: If $\alpha \geq 1$, then

- (a) Y (S) is a set of IFTs. α
- (b) Y (DS) is a set of ISs. α

THEOREM 5: If $\beta \le 1$, then

β
(a) Y (S) is a set of IFTs.

(b) $Y \cap S$ is a set of ISs.

THEOREM 6: If $i \le \alpha \le \beta$, then

- (a) Y (S) is a set of IFTs. α , β
- (b) Y (\square S) is a set of ISs. α , β

REFERENCES:

- [1] Atanassov K., Level operators on intuitionistic fuzzy sets, BUSEFAL Vol. 54, 1993, 4-8.
- [2] Atanassov K., Some modal type of operators in intuitionistic fuzzy modal logic. Part I, submitted to BUSEFAL.
- [3] Atanassov K., New operators over the intuitionistic fuzzy sets Compt. rend. Acad. bulg. Sci., Tome 46, N. 11, 1993 (in press).
- [4] Atanassov K., Two variants of intuitonistic fuzzy propositional calculus. Preprint IM-MFAIS-5-88, Sofia, 1988.
- [5] Atanassov K., Two variants of intuitionistic fuzzy modal logic. Preprint IM-MFAIS-3-89, Sofia, 1989.
- [6] Atanassov K., Gargov G., Intuitionistic fuzzy logic. Compt. rend. Acad. bulg. Sci., Tome 43, N. 3, 1990, 9-12.
- [7] Gargov G., Atanassov K., Two results in intuitionistic fuzzy logic. Compt. rend. Acad. bulg. Sci., Tome 45, N. 12, 1992 (in press).
- [8] Mendelson E., Introduction to mathematical logic, Princeton, NJ: D. Van Nostrand, 1964.