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Following the ideas and using the notation from [1-3], we shall
define some new operators over the Intuitionistic Fuzzy Modal Lo-
gic (IFML) (cf. {4-71).

Let everywhere A be a given propositional form (c.f. [8]): each
proposition is a propositional form; if A is a propositional form
then 1A 1s a propositional form; if A and B are propositional
forms, then A & B, A ¥ B, A DB are propositional forms) and let
V(A) = <¢a, b>, where a, b € [0, 1] and a + b < 1.

Firstly, we shall define the following two operators:

V(P (A)) = <max(a, a), min(B, Db)>,

a, B
v{Q (A)Y) = <min(a, a), max(B, b)>.
a, B
Obviously, for operators "t!'" and "?" from [i1]}, for which
V{'{(Aa)) = <max(i/2, a), min(i/2, a>,
V{(?7(A)Y) = <min(i/2, a), max(i/2, a>,
it is valid that:
t(A) = P (A),
1/2,41/2
?(A) = Q (A).
1/2,1/2
Let
P (V(Aa)) = V(P (A)),
a’B a'B
Q (V(A)) = V(Q (A)).
a, B o, B
We must note, that for every propositional form A
V(P {(AY) = V(A) » <a, B>
a, B

and

v(Q (A)) = V(A) & <a, B>.
o B
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THEOREM 1: For every propositional form A and for every «, B, T,

9 € [0, 1}, such that a + B ¢ 1,  + 3 ¢ 1:

(a) V(P (A)) = V(@ (A));

a, B B, «

(b} V(P (@ (A))) = V(Q (P (A)));
oaB T,9 max(a, f),min(B,d) o B

{c) V(Q (P (A))) = V(P (Q (A)))s
o B8 f,a min(a, '), max(8,4) «a,B

(d)y V(P (P (AY)) = V(P (A))
o, B 1,9 max(«, '), min(B, 3)

(e) vV(Q (Q (AY)) = V(Q (A)).
oa,B Ir,d min(«, ), max(B, 9)

Proof: (b) V(P {Q (A)))
qu r’a

= V(P  (<min(r, a), max(d, b)>)
o, B

= <max(a, min{r, a)), min(B, max(3d, b))>
= <X, min(max(a, ), max(x, a)), max(min(p, d), max(B, a))>

= Q (<max(x, a), max(B, b)>)
max(a, ), min(B, 9)

e (P (A)).
max(x, ), min(g, 8) a, B

THEOREM 2: For every two propositional forms A and and B and for
-every a, B € [0, 1], such that a + B ¢ 1:
(a) P (A &B) = P (A) & P (B),

a, B a, B «, B
{b) P (A x B) = P (A) %« P {(B),
a, B a, B «, 8
(c) Q (A & B) = Q (4) & Q (B),
a, B a, B a, B
(@) Q (A x B) = Q (A) » Q (B).
a, B o, B8 o, B
*
* *
B8 _
The operators 2 , Y, Y , Y from [3] can be transformed over
a o a, B

IFL. They have the following forms:

A, if a = a.b
Z (A) = '

a F, otherwise

A, if a » a.b
Y (A) s
otherwise

R
"
’W\
3
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B A, if a s B.b
Y (A) = '
F, otherwise
A, if a.b ¢ a < B.b
Y (.A) = ]
a, B F, otherwise

where F is the logical false.

We can define analogical operators (with the same notations)

over a set S of propositional forms by:

Z (S) = A/ Z (A) = A},
(84 (e
Y (S) = {A / Y (A) = A},
(o4 o4
8
Y (S) = {A /Y (A = A},
Y (S) = A/ Y (A = A}.
o, B a, B

Following [1]) we can define for an IFS A over E the set
DA = {<x, a, {1 - a> / x € E}.

For the needs of the discussion below we shall define the no-
tion of intuitionistic fuzzy tautology (IFT) and Intuitionistic
fuzzy Safety (IS) by:

"A is an IFT" iff "if V(A) = <a, b>, then a : b".
"A is an IS" iff "if V(A) = <a, b>, then a 1/2%.
Obviously, if A is an IS, then A is an IFT.

THEOREM 3: (a) Z (8) is a set of IFTs iff a » 1.
o

(b Z (BS) is a set of ISs iff a 2 1.
I

Proof: Let Z (S) be a set of ITSs, i.e., for every A € Z (8), if
a a
V(A) = <a, b>, then a 2 . On the other hand, a = «.b. Therefore
x 2 1. The opposite one can see directly.
{b) i= proved analogically.
THEOREM 4: If o » i, then

(a) Y (S) is a set of IFTs.
x

(b Y (DS) is a set of ISs.
a

THEOREM 5: If B ¢ 1, then

B
(a) Y (S) is a set of IFTs.
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(b) Y (DOS) is a set of ISs.

THEOREM 6: If { ¢ o < B, then

(a) Y (S) is a set of IFTs.

«, B
(b) Y (DS) is a set of ISs.
o B
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