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Abstract The paper introduces some optimization mechanisms for decomposition of fuzzy relations defined in
finite universes of discourse. Two generic problems being posed involve a single- and multiple-step decomposition.
In the first formulation a fuzzy relation R: Y X X — [0,1] is decomposed into two fuzzy relations G, Y x Z, G;:
Z x X whose max-min composition produces R, namely R = G, o G,.The multi-step decomposition concerns a
series of "intermediate” fuzzy relations G;: Z, xX - [0,1]), G, Z,xZ, - [0,1] ... Gp: Y x Zp - [0,1]
such  that R=G,0 G,, o..0 G, The pertinent optimization techniques proposed in the paper are those
exploiting some standard gradient-descent optimization schemes and the mechanisms of fuzzy neurocomputations.
Some fundamental links between the original decomposition problems and their neural network representation are
analyzed. The detailed computational schemes are provided as well.

Keywords: decomposition of fuzzy relations, optimization, learning, network representation, multilevel fuzzy
neural networks, fuzzy interpolation.

1. INTRODUCTION AND PROBLEM FORMULATION

The decomposition of fuzzy relations has become a significant research domain in fuzzy relation calculus. The
reader may refer to {1] [3] that provides an updated coverage of the relevant material. The concept of decomposition
has also been found useful in fuzzy system analysis, cf. [2 ]. _

In this paper we pursue a novel avenue by studying and developing optimization mechanisms for the
decomposition problem. We look at the relevant network architectures and design their topologies to make them
capable of representing the structure of the problem. As a prerequisite, we proceed with a brief overview of the
decomposition problem and formulate its generic version along with some extensions and modifications. Let R=[r, ] ,

i,j=1,2,...,n, be a binary fuzzy relation defined in X XX, card(X)=n. The idea is to decompose R into G : XX X —
{0,1] such that the max-min composition of G with itself yields R,
R=G oG
or in other words the membership values yield the expr:,ssion,
1i= V (g A gi)

i,j=1,2,...,n. Note also that the above formulation co];:sltitutes a generalization of the well known problem studied
in two-valued (Boolean) matrices, cf. [4].

The main thrust of our study is concentrated on the two different formulations substantially generalizing
the above problem. We will distinguish:
(i) a single level decomposition: for the given binary fuzzy relation R defined in Y X X determine two fuzzy

reladons Gand W, G: Z XX = [0,1]and W: YX Z — [0,1], card(X)=n, card(Y }=m, card (Z) = h, such that
their max-min convolution Wo G yields R, that is
R=W oG @
ie.,
h
T = l(\/l {(Wik A 8ki)
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j=12,...,m, i=1,2,...,n
(ii) a multilevel decomposition: this decomposition problem involves a series of successive max-min compositions
of fuzzy relations G,: Z, X X— [0,1], G,: Z,X Z,—> [0,1] ,... Gp 'YX Z,—[01]
card(Z »=h,, mld(Zz)::hz,...,card(Zp)=hn, where

R=G,0G,,0 .. 0G0 G, @
viz.
hp  Dp. hy ) a
i=V V ..V (g,kp/\ g(kl;-kg_l A Aglq)l)
kp=1 kp-1=1 k[

(the superscripts are used to designate the corresponding fuzzy relations). One can refer to (2) as a p-th order
decomposition; in this terminology (1) is just a second order fuzzy relation decomposition. Note also that (2) can be
made more specific by narrowing the problem down to the form in which G,=G,=. -G and X=Y; in this case R is
nothing but the p-th power of G.

2. AN OPTIMIZATION ALGORITHM FOR THE SINGLE STEP DECOMPOSITION PROBLEM

The two different optimization approaches will be studied: the first one provides with a standard gradient-based
optimization scheme- in such a way the decomposition is sought as a relevant minimization task. The second one is
more structured and is aimed at building a fuzzy neural network that is functionally equivalent with the decomposition
problem. In sequel the solution to the decomposition problem embedded in this framework is then achieved through
the training of the resulting fuzzy neural network.

2.1. DECOMPOSITION-INDUCED OPTIMIZATION

The decomposition of R as formulated by (1) can be realized by determining W and G through the
optimization (minimization) of the following mean squared error(MSE) pexfomnance index,

n

Q= 2 > (rll V (Wik A 8)

j=li=1
that is

e Q

The straightforward iterative optimization scheme can be written down as follows,

wie = vy § 2L
Wik

8ki = i - iﬂ
ogki

i=1,2,...,n, j=1,2,...,m, k=1,2,...,h, where the updaies of the fuzzy relations are realized based upon the gradient of
Q. The leamning rate & is used to control the speed of changes (updates) of the membership values of W and G. As
usually, its choice becomes a result of an obvious compromise between the speed of leaming and stability of the
overall optimization procedure. The relevant value of § usually emerges as a result of some experiments; no
“universal” value of the learning rate could be recommended. The complete formulas of the optimization procedure
are included in Appendix A. They are straightforward although one should pay an extra attention to the min and max
operators as these are not differentiable in a standard way and may affect the gradient descent computations. The
selection of "h" can be made based upon the produced values of the performance index: too small size of the hidden
layer may lead to excessively high values of Q.
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2.2. NEURAL NETWORK REPRESENTATION OF THE DECOMPOSITION PROBLEM

The decomposition task can be substituted by an equivalent problem that afterwards. could be conveniently
solved by a certain fuzzy neural network. The solution to the problem is derived through learning of this network.
Before proceeding with the complete learning scheme, we need some fundamental prerequisites. In particular, as it

will be further revealed, the entire algorithmic considerations are dwelled upon the input-output representation of
fuzzy relations.

2.2.1. INPUT-OUTPUT REPRESENTATION OF FUZZY RELATIONS

Let us consider a fuzzy relation R: Y x X —> [0, 1]. The max-min composition of
x: X — [0, 1] and R yields another fuzzyset y : Y — [0, 1] such that

y=xoR 3
or equivalently

) n
Y= i\..—ll (I‘ji A xi) = i\=/1 (xi A l‘ji).

j=1,2,...,m. Regarding x as the inputs (input fuzzy set) andy as the associated outputs (output fuzzy set) of the
network, one can represent R as the connections of 2 fuzzy neural network composed of " m" OR neurons, df. [5]
[6](7]. In particular, the entry 1, describes the connection (weight) between the i-th input and the j-th output. The

array of all the connections is equivalent with the fuzzy relation R. Especially, the j-th neuron can be concisely
described in the form

y,=OR(x, , T @)

i=12 .., m where x = [x, x,, ... x] and L= [rjl, Ty o rjn] (being the connections of this neuron)
summarizes the j-th row of R.

One can look at this fuzzy neural network from the point of view of its inputs and outputs. The
fundamental question emerges: how could one represent the network in terms of some input-output pairs of fuzzy
sets (x,,y,) k=1,2 . K*such that this input-output representation is equivalent to the original network. The
following proposition holds:

Propesition 1 (Input-output equivalency representation). The fuzzy neural network (3) is completely described
by the input-output pairs of fuzzy data of the form.

x, =[10..0) ¥, = [f11 T21 - Tm1)
x,=[010..0] ¥y, = [[12 22 ... T2
' &)
x; = [0..010..0] yj = [rlj £3j - rmj]
4 i-th entry
xn = [ 0...01] ) yn = [rln r2n aee rmn]

(notice that K* =n)

The remark to be made here is that the selection of the inputs as disjoint pairwise singletons plays a crucial
role in establishing the equivalency representation. .
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2.2.2. LEARNING

Considering these input - outputs pairs as the training set, the connections of the network can be
determined through its (parametric) learning of. [ 6] {7]. It is interesting to inspect how the learning performs under
the circumstances raised by the specific training family. Let us investigate this in more detail, by exploiting the
update scheme used previously and currently applied in its on-line version. We get

i = 13- £ 90 ©

dar;i

j=1,m, i=1..n, where Qis viewed as the Euclidean distance between the required output y, and the result
produced by the network, namely

[OR (x, r1) OR(xy,r2).. OR(Xg, r)

The following proposition holds

Proposition 2 Consider the input-output pair (x, y) of fuzzy data, s = r; - &-qg-xe [0,11°, ye[0,1] , where x is a
: o

1,ifk=1 )
fuzzy singleton, of the form x, =u={ ' . Then the optimization scheme

0, otherwise

r:=r-C—
1 1 ari
where

n
Q=|y-V (rkAXk)
k=1
with &= -;— converges within a single learning epoch producing a zero value of the performance index.

Proposition 3 Consider the input-output pairs (x,, y,) ,k=1,2,...,n where x are pairwise disjoint fuzzy singletions,
card(X)=n. Then the update scheme

=1£9Q
n=n-&—=
{an

minimizing the performance index .
n

Q =§1 Qk=k2 ye-\/ (1A xu)

i=1
and realized with equal to % produces Q=0 within a single training epoch ( here the epoch consists of a sequence
of x,'s each being shown once to the network).
The above results could be generalized as follows,
Corollary Consider the input-output pairs (x,,y,).k=1,2,...,n where x, are pairwise disjoint fuzzy singletions,
card(X )=n while y& [0,1]™. The update scheme
1ji = m-&%

J

i=1,2,...,n, j=1,2,...,m with §=%- produces a zero value of Q.

The original decomposition problem can be made equivalent to the learning in the network with a single
hidden layer and comprising OR neurons described as
yi= OR(z, w;)
= OR(X, gl)
ze [0,1]%, j=1,2,....m, i=1,2,...,n. The learning is realized for the training data set given in the format specified
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above. It is clear that the description of the network is functionally equivalent with the decomposition problem as
the fuzzy relations W and G are distributed within the layers. The parametric learning of the connections are carried
out by modifying their values according to the values of the gradient of Q.

The scope of applicability of the findings of Proposition 2 and 3, even though these are very much encouraging,
could not be overestimated as they pertain to the networks without hidden layer(s). When it comes to the hidden
layers to be included in the architecture of the network, the general analysis and its so optimistic results are not
valid. The leaming process will definitely be spanned beyond several epochs

3. MULTILEVEL DECOMPOSITION - NEURAL NETWORK OPTIMIZATION

The muitilevel decomposition can conceptually be handled in the same way as the previous problem. First,
the fuzzy relation R to be decomposed is represented as a pair of input-output fuzzy sets (x,, y,),k=1,2,...n. Then the
topology of the network is structured by selecting the number of the hidden layers and their dimensions. On the
whole, the p-level decomposition calls for the network with "p-1" hidden layers.

Two leaming scenarios can be envisioned:
(i) one phase learning. The learning completed in the network embraces all the connections. This task could be quite
demanding especially for high values of "p" (as the chains of the corresponding derivatives become longer). A special
attention should be devoted to avoidance of local minima during the learning process.
(i) successive decomposition. The idea here is to decompose the fuzzy relation successively, i.e., relation by
relation. A single hidden layer introduced first decomposes R E)to G, and 6 namely

_ ~ R=G, oG
Afterwards G is decomposed into G 'and G, ,,
G= G, 0 G

Considering that the first phase of this decomposition is error-free (viz. R is single-step decomposable),
becomes decomposed based on the training set formed out of the input-output data associated with 6

The entire procedure is performed iteratively until the required number of decomposition levels has been
achieved. It should be underlined that in case of imperfect decomposition any further decomposition might be
associated with error accumulation that becomes carried over through the input-output training data provided by this
intermediate fuzzy relation.

4. CONCLUDING REMARKS

The decomposition problems have been formulated in the conceptual and optimization framework of fuzzy
neural networks. By identifying the one-to-one correspondence between fuzzy relations and induced pairs of fuzzy sets
one is able to translate the decomposition problem into the task of learning of the network.

One among potential generalizations of the discussed problem might involve the use of triangular norms
instead of the previous max and min operations. This extension makes that the problem is not manageable with the
scope of analytical methods; hence the optimization techniques are left as the only constructive option worth
pursuing. Furthermore a dual decomposition problem based on the min-max composition could be solved in an
analogous way by studying fuzzy neural networks composed of AND fuzzy neurons.
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APPENDIX A

Here we derive the formulas of the detailed optimization scheme for a single-level decomposition problem
as it has been posed by (1). The objective function to be minimized is given as

h

n
J1i-V (WA gu)
=1
k=1

Q=Y
]

=1i

The updates of w are worked out as

h k

m n
Wst = Wseb20L 3 5i-\/ (Wik A gui) 9 V (wsk A gu)
j=1i=1 OWst
k=1 k=1

s=1,2,.,m, t=1,2, .., n The inner derivative, as it involves the lattice (max and min) operations, should
be treated carefully to prevent the learning scheme from running into one of the local minima or being eventually
trapped into a nonstationary point during the search. The latter may happen due to the zeroing of the derivatives.
Noting that, let us re-define these derivatives. Observe that

. X, ifx<a
min (a,x) =
a, ifx>a
x, ifx 2 a
max (a,x) =
a, ifx<a

This implies that the derivatives associated with these predicates produce Boolean values ({0,1}) can formally be
defined as

amin(a,)‘()_{l, ifx<a
ox 0, ifx>a
omax(ax) 1, ifx2a

ox 0, ifx<a

Put these expressions in a different way: these derivatives are just truth values of the two-valued predicates " less or
equal” and "greater or equal”, respectively. E.g., -
omin(a,x)
ox
A natural way to make these definitions more flexible would be by relaxing the above constraints and admitting their
multivalued counterparts. Thus rather than talking about the truth value of

=truth value ( "x is less or equal to a")
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" x less or equal to 2"
we are interested in a degree of satisfaction of the inclusion relationship
"x less than a"
viz. a degree to which "x is less than a". In more detail, the degree of inclusion, x < a, can be modelled as a
multivalued implication defined as x — a = sup{c € [0,1] | x t ¢ < a} where "t" denotes a certain t-norm. In
particular, the Lukasiewicz implication might be of interest as it produces a piecewise linear form of this relationship,
namely

1-x+a, x>a
Ix<all=x > a=

1, x<a

Taking advantage of this notion we modify the computations accordingly,

h h
5-8— \/ (Wsk A gki) =||\/ (Wsk A gki) S wangill llws < gill
Wst
k=1 k=t

Similarly, the connections g are subject to the following updates:

h h
Bo=gat+a .i G-\ (Wik A ge) % V (Wi A gu)
k=1 k=1
and
h h
53; NV (Wica ga) | =1 \/ (wikA g} < (Wis A gse) I 1 gt < wisll

k=1 k#s



