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Abstract

The goal of this work is to make an analysis of the performances of a fuzzy controller and a compara-
tive study of fuzzy control algorithms with a conventional control approach (PID) in the case of linear
dynamic process control. This comparative study is made using computer simulation. The first part is
devoted to presentations of a simulated system, and a simulated controllers. In the second part, the
fuzzy controller is examined in details. A sensitivity of the fuzzy logic controller to design parameters,
different shapes and superposition of membership functions, is tested. Moreover, the simulations are
done for the different types of fuzzy reasoning and defuzzification methods.

1. Introduction

Fuzzy controllers were developed to imitate the performance of human expert operators by encoding
their knowledge in the form of linguistic rules [Mam75]. They provide a complementary alternative to
the conventional analytical control methodology. Some authors argue that fuzzy controllers are suita-
ble where a precise mathematical model of the process being controlled is not available [Kic78)

[Li88]. But, it is impossible to build a controller which need not assume anything about its environ-
ment.

An often remarked disadvantage of the methods based on the fuzzy logic is the lack of appropriate
tools for analysing the controllers performance, such as stability, optimality, robustness, etc. The main
advantage is the possibility to implement a human experience, intuition and heuristics into the control-
ler. The goal of this work is to study the performances of a fuzzy controller and to compare it with a
classical control approach.

2. General structure of fuzzy system

Every fuzzy system is composed of four principal blocks (Figure 1):

Knowledge base
|  Database l [ Rulebase |
Fuzzification Decision Defuzzification E
E interface > making unit interface :
Process 4__0_'1?1‘_1}_

Figure 1. General structure of fuzzy inference system
1. knowledge base (rules and parameters for membership functions)
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2. decision unit (inference operations on the rules)

3. fuzzification interface (transformation of the crisp inputs into degrees of match with linguistic
variables)

4. defuzzification interface (transformation of the fuzzy result of the inference into a crisp output)

2.1 Types of fuzzy reasoning

There are several types of fuzzy reasoning. The most important, in the literature, are:

+ Type 1: Max Dot method. The final output membership function for each output is the union of the
fuzzy sets assigned to that output in a conclusion after scaling their degree of membership values to
peak at the degree of membership for the corresponding premise [Zim90]

 Type 2: Min max method. The final output membership function is the union of the fuzzy sets assi-
gned to that output in a conclusion after cutting their degree of membership values at the degree of
membership for the corresponding premise. The crisp value of output is, most usually, the center of
gravity of resulting fuzzy set [Lee90].

« Type 3: Tsukamoto’s method. The output membership function has to be monotonically non-
decreasing [Tsu79]. Then, the overall output is the weighted average of each rule’s crisp output
induced by the rule strength and output membership functions.

« Type 4: Takagi and Sugeno method. Each rule’s output is a linear combination of input variables.
The crisp output is the weighted average of each rules’s output [Jan92].

Antecedent part of the rule Consequent part of the rule
ﬁg?ll.i::i‘;“ Type 1 Type 2 Type 3 Type 4
product
Hx A, B, ormin C,
1
zy =fj(x.y)
N R Y A Y = ax+by+c
x
""" 7y = f(x.y)
= pPX+qQy+r

Inputs

z g= 2%, WiZitWan Wizt Wz
Zz Wi+ W w1+ Wy
Mean of Center Tsukamoto’s  Weighted
maxima of gravity method average

Figure 2. Four types of reasoning in fuzzy inference systems
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To illustrate these four types of fuzzy reasoning, we will take the system with two inputs and one out-
put. Suppose that two rules are activated. (A rule is activated when its firing strength is different than
zero.) The rules are the following:

Ri:Ifxis Ajand yis By then zis Cy
Ry:Ifxis Apand yis B, then zis C,

The decision procedure for the four types of fuzzy inference systems is shown on the Figure 2. Fuzzy
operator and is min. One can notice that operator or is different for every type of system.

2. 2 Defuzzification strategies

Defuzzification is an operation with the aim to produce a nonfuzzy control action. It transforms an
union of fuzzy sets into a crisp value. There are several methods for the defuzzification, proposed in
the literature. We will describe here two of them shown in the Figure 2.

2. 2.1 The center of gravity method

This widely used method generates a center of gravity (or center of area) of the resulting fuzzy set of a
control action. If we discretize the universe it is:

where n is the number of quantisation levels, r; is the amount of control output at the quantisation level
i and z; represents its membership value [Ber92].

2. 2. 2 The mean of maximum method

The mean of maxima method generates a crisp control action by averaging the support values which
their membership values reach the maximum. In the case of discrete universe:

]
r;
Z = Z 7
i=1
where [ is the number of the quantized r values which reach their maximum memberships [Lee90].

3. Structure of a controlled system

The objectives of this simulation is to control the position of a servomotor based on the use of a direct
current motor with separated excitation [Bov91]. The purpose of the regulation is to keep process
variables close to specified values inspite of process disturbances. In the servo problem, the task is to
make the process variables respond to changes in a command signal in a given way, where the com-
mand signal must be known. One way to express how the system should respond to a command signal
is to give a model of the desired response. This can be done in specifying a desired transfer function
from the command signal to the process variables. Moreover, it is possible to express servo response
in terms of specifications on the desired closed loop step response or frequency response. We will
mention here only the time domain specifications (Figure 3). They are:

« risetime T,

« overshoot M
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« settling time T (time before the step response is within 1p from its steady state value)
- steady-state error e

120 e0=0

1 00 200 300 200 500
| Tr 1
Ts

Figure 3. Expressing servo specifications in terms of requirements on the step response [Buh83]
The example system that we simulated is the same as in [Li88] and [Bov91].

That system can be represented by a diagram in Figure 4, where:
 uis an input voltage (control variable)

 y observed output

* 1T - electrical time constant (0.0028 sec)

* Ty, mechanical time constant (0.28sec)

« K static gain of the motor (K=0.25)
As 1.<<1y, the equivalent transfer function will be:

K
Gls) = s(1+7,5)
u 1 1 kKly
1418 14+ty,s §

Figure 4. Structure of the simulated system

General structure of this system in a control loop is shown in the Figure 5a. Reference signal is a snep
function shown in the Figure 5b.

()
r(k: Q ek) Controller u®) Plant Yo 1

Figure 5. Structure of the controlled system and a reference signal
Sampling period taken in this simulation is 10ms according to the Shannon’s theorem. Discretised
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transfer function [Ast89] is:
_ — 1 1 a biz+b,
G(z) = K(1-2 )z[;s(lﬂw] = Freire 3.1
where:
I I
b, =m,,,(11-1+e") , b,=m,[1-(1+11)e‘-]
I I
al=—(1+e"‘) , a2=et"

Recursive model of the system is:
Y(T) = ~a)y[(k—1)T] —a,y [(k=2)T] +b,e[(k=1)T] +be[(k~-2)T]

4. Classical control approach

The control problem presented here is simple problem and can be handled very well by PID control.
PID is very well known and proved as very efficient. The textbook version of the algorithm is:

u() = Ke() +K,fe(s)ds+K,5
0

where u is the control variable, e is the error defined as e = r - y (Figure 5a) where r is the reference
value (Figure 5b) and y is the process output.

e(k) X, .[ dt u(k)

K

-~

Figure 6. Structure of the PID controller

There are three parameters to adjust K, K; and K. The structure of the controller is represented in the
Figure 6. A reasonably realistic PID regulator can be described by:

k
u(kT) = K,e(kT) +K,Y e JT) +K [e (kT) —e((k-1)T)] 4.1
j=0

One of the most used method for the adjustment of parameters for PID controller is Ziegler-Nichols
method [Ast89]. This simulation is done with PD because the controlled system has an intergrator
term. The response of the system with the controller in the closed loop is given in the Figure 7.

Control signal and error signal are represented in the Figure 8. One can notice that the range for the
control signal is [0, 12] and the range for the error signal is [0, 1]. Changes in the error Ae are in the
[0,1]. It is very important for the design of the fuzzy controller.
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Figure 7. Step response of the system controlled with the PID in the closed loop
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Figure 8. Control and error signal of the system

5. Fuzzy controller

There are several methods to design a fuzzy controller:

- modellization of the knowledge of the control engineer

« modellization of the human operator actions and his experience

- fuzzy modellization of the controlled plant v
There is no systematic methodology to design the fuzzy controller. The most used approach is to
define membership functions of the inputs and outputs, after rule data base and to test a controller.
Fuzzy controller is nonlinear and it is very difficult to examine the influence of certain parameters.
Because of that, the only method would be to test the controller on the system, and to adjust parame-

ters which seem to be wrong. Our goal is to examine the influence of certain parameters and to control
a linear system with known parameters and transfer function.

A basic structure of a system controlled by the fuzzy controller is presented in the Figure 5. Inputs
variables, or process states in the fuzzy controller are:

« the error e(k)

« the change in error Ae(k) = e(k) - e(k-1)

Since the inputs in this controller are the same as for one PD controller, we can consider that the fuzzy

controller simulated here corresponds to the classical PD controller. Its structure is presented in the
Figure 1. The design of fuzzy controller is related with a choice of following parameters:

1. Knowledge base
« the rule base (choice of input and control variables and control rules)
« the universe of dicourse for every process state (choice of membership functions with their
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parameters and shapes)
2. Decision making logic
« definition of fuzzy implication
- interpretation of the terms and and also (choice of the type of fuzzy reasoning)
3. Defuzzification mechanism

In this simulation, we partitioned a space of input and output variables into 7 fuzzy subsets. They are
presented by 7 membership functions as in the Figure 3. These functions are:
« Negative Big (NB)
« Negative Medium (NM)
« Negative Small (NS)
» Close to Zero (ZR)
+ Positive Small (PS)
« Positive Medium (PM)
« Positive Big (PB)
The rule base that we have taken the rule base proposed by Mamdani [Mam75] for the s1mu1at10n of
PD controller. These rules are shown in the Table 1. The table is read in the following way:
If the error is negative small (NS) and the change of error positive big (PB),
than the control action is positive medium (PM).

Ae |NB |[NM|NS [ZR {PS |PM | PB
NB | NB|NB|NB|NB|NS|ZR | PS
NM|NB|NB|NB|[NM|NS|ZR | PS
NS|{NB|NB|NM|[NS|ZR | PS |PM
ZR |[NB|NM| NS|ZR | PS | PM | PB
PS|NM| NS |ZR | PS |PM| PB | PB
PM|NS|ZR | PS|PM|PB | PB | PB
PB|{ZR | PS |PM| PB |PB|PB |PB

Fuzzy reasoning methods that were simulated are the methods of type 1 and 2 presented in the
Figure 2, and the defuzzification strategies are the center of gravity and mean of maximum method.

6. Results of the simulation

6. 1 Influence of the parameters of the membership functions

The first experiment is a test of the influence of the parameters of membership functions. Once they

are adjusted, we can proceed to test the influences of other factors to the quality of the system res-
ponse.

Membership functions for inputs ant output are symmetrical, triangular or bell shaped and uniformly
distributed as in the Figure 9. We will test the sensibility of the controlled system to three parameters:
limits for the universe of discourse for e, for Ae and for u and we will denote them with e,,,;, Aep,,
and iy, respectively. Fuzzy inference is of the type 2 with the defuzzification method center of gra-
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vity. The reason is that these methods are most frequently used in the literature. The choice of the
limits for membership functions were done with a knowledge of the range for the error and control
signal of the system controlled by the PID controller (Figure 8). It was impossible to make this choice
without any knowledge on the controlled system. We can consider these informations as something
that we could receive from the operator.

NL NMNS%RPS PM PL NL NMNS1ZRPSPM PL

-Em a Em 'Em b Em
Figure 9. Uniform distribution of membership functions for e, Ae and u
a) triangular functions, b) bell-shaped functions

I 100 200 200 400 506 © 100 200 b 300 400 50¢
a

Figure 10. Responses of the system with fuzzy controller, e,,;, = 3, A, = 1
A Uy =18, Bty = 14, C. thypy = 12, D. Uy = 5, E. Uy = 1
a) triangular membership functions, b) bell-shaped membership functions
(Dashed lines represent the step response with the PID controller)

From the results shown in the Figure 11 and Figure 12, we can conclude that the choice of e,,,, and
Ae,qy corresponds to the choice of constants K, and Ky (eq. 4.1). The changes of the Aey,,, have the
same effect to the quality of the response as the changes of the constant Ky and the changes of the e,y
have the same effect to the quality of the response as the changes of the constant Kp which prove that
this controller corresponds to the classical PD controller.

As we can see in the Figure 12 the response is not very sensitive to the changes of Aeyax if Aepay is
bigger that 0.5. It is due to the fact that the most of the time the changes of the error signal are very
close to zero and that the most activated function is ZR.

The shape of the membership functions is not an important parameter, but we can observe that the
triangular functions give the slightly better result. Specially, the risetime and setting time are shorter
when triangular functions are used.

For the limits of u, the best choice is to take the range of control signal same as for the PID controller,
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since the response of the fuzzy controlled system is very sensitive to this parameter (Figure 10).

=2 Rad

100 200 300 400 5
a b

O}
= 2nd
ol

o 100 200 300 400 5
Figure 11. Responses of the system with fuzzy controller, u,,,;, = 14, Aej = 1

A ey =05,B.epy=1.1,C. €5, =3,D. €pix =7, E. € = 10
a) triangular membership functions, b) bell-shaped membership functions
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Figure 12. Responses of the system with fuzzy controller, u,,;, = 14, €y, =3
A Ay =0.1,B. Ay, = 0.5, C. Ay = 1,D. Ay =2, E. Al = 5
_ a) triangular membership functions, b) bell-shaped membership functions

6. 2 Distribution of the membership functions

From the first experiment, we noticed that the best results were received with the following parameters
for membership functions:

* Cpax=3

. Aep =1

e u=14

In this experiment the sensitivity of the system response to the distribution and the overlap of the

membership functions is tested. We have taken the same fuzzy inference and defuzzification method
as before and we have tested only the triangular functions.

The result of the simulation is shown in the Figure 15 and different distributions simulated are presen-
ted in the Figure 13 and Figure 14.

We can notice that the system is very sensible to the distribution of the membership functions, and that
the parameters that we adjusted for the regular distribution are not the adequate. It means that the con-
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troller has to be readjusted.

NL NM NS ZR PSPM PL NL NM NSZRPS PM PL

—————— 1 1
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Figure 13. Nonuniform distribution of the membership functions

NL NM NS ZRPS PM PL NL NM NS ZR PS PM PL
1 1

C D
Figure 14. Nonuniform distribution of the membership functions

0 100 200 300 200 500
Figure 15. Response of the system for different distributions of membership functions (Figure 13
and Figure 14)
It is interesting to notice that the overlap of the functions is very important. If there is no overlap as in
the Figure 14D, the system can not reach the set point. It is due to the fact that two rules can’t be acti-
vated in the same time. Moreover, if the distribution is quite uniform and the membership functions
NS and PS don’t touch as in the Figure 14C, it is impossible to reach the set point. The reason is that
for the very small values of the error and the change of the error, only one rule is activated (If the e is
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ZR and Ae is ZR then u is ZR) and the control signal has always the same value.

6. 3 Different types of fuzzy reasoning and defuzzification method

The last experience is devoted to the different types of fuzzy reasoning and defuzzification method. As
before, the simulation is done for the parameters that were the best in the first experiment and for the
uniform distribution of the membership functions. The fuzzy reasoning methods are the type 1 and
type 2 presented in the Figure 2. There is no a sensitivity of the response to the types of fuzzy reaso-
ning A, B and C. The response of the system has a risetime and settling time the same as for the PID
controlled system. The problem is the Max Dot fuzzy reasoning combined with mean of maximum
defuzzification method. The reason is that the crisp values for the control signal are the centres of
membership functions defined for u.

y ABC
D

t
0 100 200 300 400 500

Figure 16. Response of the system for different fuzzy reasoning methods and methods for
defuzzification

A. Min max and center of gravity, B. Max Dot and center of gravity
C. Min max and mean of maximum, D. Max Dot and mean of maximum

7. Conclusions

Fuzzy controllers have the advantage that can deal with nonlinear systems and use the human operator
knowledge. Here we tested it with a linear system of second order with known parameters. In order to
compare it with one classical controller we simulated the same system controlled by PID.

PID controller has only three parameters to adjust. Controlled system shows good results in terms of
response time and precision when these parameters are well adjusted.

Fuzzy controller has a lot of parameters. The most important is to make a good choice of rule base and
parameters of membership functions. Once a fuzzy controller is given, the whole system can actually
be considered as a deterministic system. When the parameters are well chosen, the response of the sys-
tem has very good time domain characteristics. The fuzzy controlled system is very sensitive to the
distribution of membership functions but not to the shape of membership functions.

Fuzzy controlled system doesn’t have much better characteristics in time domain that PID controlled
system, but its advantage is that it can deal with nonlinear systems.

One of the most important problems with fuzzy controller is that the computiong time is much more
long that for PID, because of the complex operations as fuzzification and particularly defuzzification.
Some optimization can be done if the defuzzification method is simplified. It means that it is recom-
mended to avoid center of gravity method.
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PID controller can not be applied with the systems which have a fast change of parameters, because it
would require the change of PID constants in the time. It is necessary to further study the possible

combination of PID and fuzzy controller. It means that the system can be well controlled by PID
which is supervised by a fuzzy system.
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