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ABSTRACT

We develop a simple and effective approach for approximate estimation of the cluster
centers on the basis of the concept of a mountain function. We call the procedure the mountain
method. It can be useful for obtaining the initial values of the clusters that are required by more
sophisticated cluster algorithms. It also can be used as a stand alone simple approximate clustering
technique. The method is base is base upon a griding of the space, the construction of a mountain

function based upon the data and then a destruction of the mountains to obtain the cluster centers.
1. Introduction

The method of Fuzzy C-Means (Fuzzy ISODATA) has been the dominant approach in both
the theory and practical applications of fuzzy techniques to unsupervized classification for almost
two decades.{1]

According to [2-5] if our data, {x1, ..., X} < RS, is n points in the s-dimensional space,

the Fuzzy C-Means (FCM) defines a soft clustering into m < n clusters, characterized by cluster

centers:
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where by | . | we denote any inner product norm induced on RS (in particular the Euclidean norm).

. . . * . .
If for some k and i |xk - x;l = 0, a singularity occurs , then v;, for all i are any nonnegative numbers

such that:
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Such a partitioning provides a necessary condition for the local minimization of the FCM

objective function J:
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The FCM approach is essentially an iterative technique which starting with cluster centers

generates membership grades which are used to induce new cluster centers.. The process continues
it a stabilizes.

One difficulty with this approach is the estimation of the initial values of the cluster centers.
This fact along with the local minimizing property of the FCM algorithm can sometimes complicate
the process of clustering.

In this paper we suggest a heuristic algorithm for the initial estimation of the cluster centers.
In this mode the aim of this approach is to provide a tool for supporting the FCM method.
However, in situations where only approximate, not too exact, values of the cluster centers are
needed, this approach can act as a stand alone clustering algorithm. The method introduced here is
called the Mountain Method (MM) and its spirit is based upon what a human does in visually
forming clusters. As we shall subsequently see this approach would be particularly useful in an
interactive mode. The idea of this approach is rather straight forward. The first step is to form a
discretetization of the object space RS by forming a grid on RS(see figure #1). The intersection of
the grid lines, which occurs at what we shall call the vertex or node points , provides our desired
discretetization. We shall denote the finite subset of RS consisting of the vertices as V. The set of
points in V constitute our condidates for cluster centers. Thus we see the degree approximation of
our final centers is very sensitive to the fineness of our griding. The finer the griding the less
approximate but, more calculations are needed. The second step is the introduction of the data and
construction of what we call the mountain function. The mountain function which we denote as M
is defined on V and is constructed as follows. For each piece 'of data, x{, we add an amount to the

M value at each point v in V. The amount added depends on the distance of v from x;, the closer the



two the more added. In this way after all the data points have been considered we have a function
on RS, actually V, which looks like a mountain range reflecting the distribution of the data. The
next step is the selection of the cluster centers. This is accomplished by the destruction of the
mountains. We find the point in V, ¢, which has the greatest value for M, the peak of the
mountain range, this becomes our first cluster center. At all points v in V we subtract from their M
value a quantity dependent upon its distance from cq and the value M(c1). The effect of this
subtraction is to reduce the mountains. We next look for the new peak. This becomes our next
cluster center. We now use this to reduce our mountain function. We continue in this manner until

the mountain function is virtually destroyed.
2. The Concept of a Mountain Function

Let us assume a collection of n data points (X1, ..., X} in the s dimensional space RS. We
shall denote by Xkj the j-th coordinate of the k-th point, where k=1,2,. .,nand j=1, 2, . ., s.
We shall without loss of generality, restrict the s dimensional space RS to an s dimensional
hypercube I] x .. x Ig where the intervals Ij, j=1,2,.., s are defined by the ranges of the
coordinates Xgj, i.¢.:

I; = [ming(xyj), maxj(xij)]

Evidently the hypercube contains all the points of the data set {x{, ..., x,}. Further we shall
discretize each of the intervals I into T equidistant points. Such a discretization forms an s
dimensional grid in the hypercube with nodes Nj; . i ¢)» Where indices iy, ..., ig take values
from the sets [1, ..., 1], ..., [1, ..., rg]. We shall denote the equidistant coordinates of the grid
nodes by X(ii), ey Xg.) , where points quantize the interval Ij.and j=(1,s). The grid discretizes the
space restricted by the hypercube. We emphasize the significance of this discretization, the grid
nodes are are potential cluster centers. On one hand the coarser the discretetization, less nodes, the
less calculations required but also the coarser the final cluster center values. In the following we
shall use the simpler notatiion of Nj to indicate a node with the implicit fact that i equals some tuple

of the form (iy, ..., ig).



We shall look at any of the grid nodes as a possible candidate to become a cluster center.
Let d(x, Nj) be the distance from the data point xy to the grid nodes Nj. Consider the simple case
of two dimensional data, S = 2. We assume a discretization of I; into 3 and I into 4 points. In
this case we can express Xk = (Xk1, Xk2). Furthermore our discretetization gives us
1 = (x{, xV, x{P) and 1 = (xP, xP, xP, xP)}.

In the case where i1 = (1, 3) the distance is defined as follows:

1
dixi N;) = (xie - X$PIP + Ixieo - XPip)P

In particular we can consider p = 1 or p =2 (Euclidean distance).

As we discussed in the introduction, we construct a mountain function defined over the set
grid nodes by adding, for each data, an amount to each node proportional to its distance from the
data point.

In the following we shall use the distance measure d(xy, N) to score the membership of each
grid node Nj to the data points {x{, ..., Xp}. We shall assign higher scores to the nodes that are

closer to a data point. The following function provides our mountain function at the vertex point Nj

MN;) = i e-a d(xg, Ni) )
k=1
In the above « is a positive constant.

It is evident from the form of function (I) that the closer a grid node Nj is to the data point x)
the higher is the score supplied by the exponential term of (I); it is maximal for a data point that
coincides with the grid node; it is decreasing exponentially for the farther grid nodes. We can look
at the values of function M(Nj) as heights of a mountain range, having as a base the grid. We call
the function M(N;) the mountain function. The value of the mountain function can be seen to
be closely related to the density of data points in the neighborhood of the node. As such it can be
seen to represent the potential ability of any of the grid nodes to be a cluster center. The higher the

mountain function value the larger is this potential ability. Therefore the mountain function value

can be used as indicators of the clustering of the the hypercube from the data.



3. Estimation of the Cluster Centers from the Mountain Function

The basic idea of identification of cluster centers estimates is simple and straightforward.
By using of the mountain function we are looking systematically for global maxima and associate
them with cluster centers. We start by looking for the grid node with maximal mountain value, the
mountain range peak. If there are more than one maxima, we select randomly one of them. Let us
denote the maximal value of the mountain function as M*{ thus

M] = Max;[M(N].
We note it is the global maximum of the mountain function

Let the grid node NT indicate the point in the hypercube where this maximal score of the
mountain function is attained, it is a peak of the mountain range formed by the data set. It should be
noted that this peak is usually surrounded by a number of grid points that also have high scores this
is due to process of constructing the mountain function and the inherent continuity of the hypercube.
We shall assign this peak node, NT, as the first cluster center.

In order to find the next cluster center we must first eliminate the effects of the cluster center
just identified. In order to accomplish this we subtract from our current mountain function a value
at each node, this gives us a revised mountain function. The amount subtracted at each node point
is proportional to the distance of the point from the maximal, the newly assigned cluster center, as
well as being proportional to the current maximal value, M"{ In this manner we now form a new
revised mountain function 1/\\42 defined on the set of all nodes:

1/\\/[2(Ni) = ﬁl(Ni) M] zn: e-B d(NT, N (I

k=1
In the above I/\\/Il(Ni) is actually the original mountain function, the value M"f is the current maximal
and [ is a constant.

. .. . *
To find the next cluster center we proceed in a similar manner. We find a node point, N»,

that maximizes the new reduced mountain function, MZ, this becomes our second cluster center we

then remove the effects of this center in a manner similar to II giving us a new modified mountain
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function M which we use in the next stage. More generally expression II can be written as

fv\lk (Np = ﬁk'l(Ni) M. i e-BdMNe, N) ()
k=1
In the above 1/\/\1‘k is the new mountain function, l/\\/lk-1 the old mountain function, M;.l the peak
value of the location of this peak value, the newly identified cluster center, Ni:_l.

We can look at this process as a process of destroying the mountain function. This process
will guarantee that those nodes closer to the new identified cluster center will have their mountain
more strongly reduced then the those further away. In some sense the idea of this approach is in the
same spirit as Kohonen's [6] approach to self organization.

In the formulation we have suggested we have used an exponential function to introduce the
effects of adding data and removing cluster centers one could use other functions, in particular a
linear function may we used.

In the examples that follow we have found it more effective to bound the new mountain
functions below by zero, thus
1/\7Ik (N;) = Max [i/\lk'l(Ni) M1 i e-B dMNi1, N, 0).

k=1
We shall demonstrate the workings of the mountain method in the following example.

Example 1. We consider a set of 10 data points in R2 space shown in figure #1 and listed in table
1. The intervals Iy, Ip are [0, 1] and [0, 1]. The grid for discretization, with r] =r) = 6, is shown
in the same figure. The numerical values of the mountain function calculated according to (@) are
listed in table 2. In figure #2 we depict the mountain function in the 3D space. It is seen that the
maximal value of the mountain function appears at node (1, 0.6) of the grid. Therefore we associate
this node with the first cluster center estimate. To find the next (less important) cluster center we
remove the effect of the first cluster by destroying the mountain function. The modified mountain
function, after removing the first custer center, is depicted in Fig.3. Its numerical values are listed
in table 3. Tt can be seen by comparison of the entries of table 2 and table 3 the extensive destroying
of the mountain function around the cluster center estimate (1.0, 0.6). By inspecting the modified

mountain function we find the global maximum at grid point (0.6, 1.0). It becomes the estimated



second cluster center.

k X Y

1 0.36  0.85
2 0.5 0.89
3 0.62  0.55
4 0.50 0.75
5 0.35 1.00
6 0.90 0.35
7 1.00 0.24
8 0.99 0.55
9 0.83 0.36

10 0.88 0.43
Table 1. Given points in the R2 space.
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Fig.2. Example |: The mountain function.



11 x
0.00 0.20 0.40 0.60 0.80 1.00

.00 0.06 0.11 0.19 0.31 0.48 0.65
.20 0.10 0.18 0.32 0.54 0.88 1.31
.40 0.16 0.28 0.50 0.85 1.42 2.33
.60 0.23 0.43 0.75 1.25 1.95  2.75
.80 0.32 0.62 1.08 1.70 2.33 2.24
.00 0.41 0.84 1.54 2.28 2.14 1.74
Table 2. Numerical values of the mountain function.
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Fig.3. Example 1: The mountain function after
removing the first center.

X
0.00 0.20 0.40 0.60 0.80 1.00

.00 0.04 0.06 0.10 0.16 0.26 0.40
.20 0.06 0.10 0.16 0.25 0.42 0.75
.40 0.11 0.18 0.28 0.39 0.53 1.09
.60 0.18 0.31 0.50 0.70 0.72 0.00
.80 0.28 0.52 0.87 1.24 1.44 1.01
.00 0.38 0.77 1.39 2.00 1.8 1.19

Table 3. Numerical values of the mountain function after removing
the first center.
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We continue the production of new cluster centers and reduction of the mountain function
until the level of the current maximum M;.l, compared with the original maximum M’; becomes
too low. This means that there are only very few points around this cluster center and it can be
omitted. We shall stop the process of destroying the mountain function when the ratio:

Mj
M1
where 8 is given parameter; we shall denote by p* the step that satisfies the stop criterion (V).

<3d V)

Obviously it defines (p*-1) cluster centers.
We shall summarize the above discussion in the following algorithm:
Algorithm
1. Calculate the intervals Ij, j=(1,s).
2. Quantize the intervals and form the grid.
3. Calculate the mountain values according to (I).
4. Find the cluster centers estimates and modify the mountain function according to (III)
until stopping rule (IV) is satisfied. |
Example 2. We consider the two dimensional data set, that is presented on figure #4. Its

mountain function is depicted in figure #5.
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Fig.4. Example 2: Original data set.
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Fig.5. Example 2: The mountain function

The first estimated cluster center estimate is found at the node (0.7, 1.0). The absolute maximum of
the mountain function at this node is 9.99. The process of estimating the cluster centers and
destroying the mountain function is illustrated in figures 6 - 9. The second center estimate is at node
(0.9, 0.5); it is associate with an absolute maximum 7.49 of the modified mountain function that is

presented on Fig.6.
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Fig.6. Example 2: The mountain function after
removing the first center.
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Similarly we obtain the next cluster center estimate at node (0.4, 0.6), with an with peak value of

the modified mountain function 5.78, see figure #7.
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Fig.7. Example 2: The mountain function after
removing the second center

In the same manner we proceed finding the next cluster center estimates by destroying the mountain

function, see figure #8 and figure #9.
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Fig.8. Example 2: The mountain function
after removing the sixth center.
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Fig.9. Example 2: The m:)unt;in function after

removing the seventh center.
The first five identified cluster centers are shown in figure #10.
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Fig.10. Example 2: Original data
set and centers estimates
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4. Conclusion

A simple, easy to implement algorithm, for approximate clustering was presented in this
paper. It is based upon the idea of griding the space and the concept of cohstructing and destroying
the a mountain function. This method which allows us to identify estimates of the cluster centers
can be used to identify initial starting cluster centers values for use in more sophisticated cluster

seeking algorithms such as fuzzy c-means. This technique can also be used as an end in itself to

provide a quick and approximate technique for locating cluster centers. Its eventual combination

with computer graphics will allow us to develop a natural and effective approach to clustering.
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