A SHORT COMMENT ON LIN' FINITE FUZZY ADEGUACY.

(Nicola Umberto ANIMOBONO, C.P. 2099, I 00100 Roma AD, Italy)

In approximate environments (rough sets, fuzzy sets and neighborhood systems) Lin [2] give adequacy condition to obtain exact information.

Here we shortly review the Lin's results and we give a different comment on their intrinsec quality: for finite fuzzy systems it is here proved that we can always to have exact information.

Keywords: point separation, fuzzy adeguacy.

1. GENERALITY ON FUNCTIONS FAMILIES.

Set-theoretical environment.

1.1 Definition.

A function family $\mathcal{J} \subseteq I^{\mathcal{N}}$ is said to <u>separate</u> (or <u>distingueshes</u>) points iff for each pair of distinct points $x,y \in \mathcal{N}$ there is an $f \in \mathcal{J}$ $(f: \mathcal{N} \to I)$ such that $f(x) \neq f(y)$.

1.2 Given $x \in \mathbb{N}$ and $f \in I^{\mathcal{R}}$ we define:

$$[x]_f = \{y \in \Omega \mid f(y) = f(x)\} = f^{-1}(f(x))$$
 f-classe of x.

1.3 Lemma.

If the family $\iint \subseteq I^{\Omega}$ distingueshes the points, then $\forall x \in \Omega$ it is: $\int_{f \in I} [x]_{f} = \{x\}.$

Topological environment.

Let $(\Omega, \mathcal{T}_{\Omega})$ and (I, \mathcal{T}_{I}) be topological spaces, with I = [0, 1].

1.4 Definition.

A family $\mathcal{F} \subseteq I^{\Omega}$ is said to separate points from closed sets iff whenever F is closed for \mathcal{T} and $x \notin F$, then there is an $f \in \mathcal{F}$ such that $f(x) \notin \overline{f(F)}$

1.5 Rem. The point separation and the same from closed sets are indipendents.

1.6 Proposition.

If $J \subseteq I^{\Omega}$ is to separate points from closed sets and U is T_1 then J is to separate points.

1.7 Theorem.

If (I, \mathcal{T}_I) is the euclidean real topological space, then: (I, \mathcal{T}_I) is a Tychonoff space iff there is a continuous functions family $\mathcal{F} \subseteq I^{\mathcal{L}}$ such that is separate pointsnfrom closed $[\Lambda]$.

2. FUZZY ADEGUACY.

2.1 For brevity, we call <u>fussy set</u> any $f \in I$ (fussy sets and their membership functions are identified).

2.2 Definition.

A fussy set family \mathcal{F} is called adequate to exact information iff their (membership) functions distingueshes the points from closed sets.

By 1.7

2.3 Corollary.

There is an adequate fuzzy sets family \mathcal{I} in Ω iff Ω is a Tychonoff space [4].

2.4 Remark.

In 2.2 the condition "from closed sets" is essential to obtain 1.7 and honce 2.3. In [2] Lin use the def.1.1.

By $\int = \{x_i\}_{i \in \mathbb{N}}$ the function $f: \mathcal{I} \to I$ s.t. $f(x_0) = 0$, $f(x_1) = \frac{1}{1}$ (1>0) is to separate points; but, with $\int_{\mathbb{C}} = \{\emptyset, \mathcal{I}, \{x_0\}, \{x_1\}_{i>0}\}$, is not to s.p. from closed sets $\{x_0 \notin \{x_1\}_{i>0}\} \to f(x_0) = 0$.

3. FINITE ADEGUACY.

Let A be a finite universe.

3.1 Lemma.

If a <u>finite</u> topological space is T_1 then its topology is <u>discrete</u> [1].

3.2 Theorem.

There is an adequate (continous) function) family \mathcal{F} in Ω iff the topology of Ω is discrete.

Proof.

 \Rightarrow) Given $x \in \Omega$ and $f \in \mathcal{I}$ let $x_f = f(x) \in I$ be. Any point x_f is elessed in I (that is T_1); then $[x]_f = f^{-1}(x_f) \ni x$ is elessed in \mathcal{X}_f (f is continous), and that is so $\forall f \in \mathcal{I}$; hence it is elessed too the $\bigcap_{f \in \mathcal{I}} [x]_f = \{x\}$ (by lemma 1.3): \mathcal{X}_f is T_1 . By lemma 2.1 \mathcal{X}_f is the diserete topology.

Any $f \in I^{\Omega}$ is continuous. Given $x \in \Omega$, let $f = \chi_{\{x\}}(f(x) = 1; f(y) = 0 \quad \forall y \neq x)$ be: $f = \{\chi_{\{x\}}\}_{X \in \Omega}$ is adequate.

4. CONCLUSIONS.

For Lin "the theorem 1.7 gives an intrinsec characterisation of adequate fussy knowledge about the universe Ω : Tychonoff is an intrinsec property of Ω , while the definition of adequacy is an external property of Ω (represented by function of Ω). So Lin believe neighborhood systems is BETTER, because we could know that Ω is a Tychonoff from other reasons without explicit constructing the membership functions" [2]. For us, instead, the adequacy (def. 1.9) is not external property of Ω but linked at topology of Ω : "fuszy set" is a set—theoretical concept, "Tychonoff" as "adequacy" is topological

concept (in "adeguacy" the fussy sets are "continous" function);

and this ideas are preved by the theorem 3.2 "finite adequacy = diserete topology".

(In general case "fussy adequacy = normality $T_1^{"}$).

REFERENCES.

- []CHECCUCCI V., TOGNOLI A., VESENTINI E. Lezient di topologia generale - Feltrinelli, Milano (1969).
- [2] LIN T.Y Topological and fuzzy, rough sets in [3], 287-304
- [3] SLOWINSKI R. (ed) Intelligent decision support Kluwer AC, Dordrect (1992).
- [4] WILLARD S. General Topology Addison-Wesley PC, Reading (Ma) (1970).