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Abstract: In this paper, we iniroduce the concept of g .- measure and its
entropy on a finite product space. Some properties of this g , -measure and
its entropy are invesigated.
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1. Introduction

In the classical probability theory, probability measure and its shannon
entropy are studied. The concept of g, -measures on measurable spaces was
first introduced by Sugeno[l], and it has been studied extensively by many _
authors (see, e.g.[2]-[7]). In this paper, we deal with the g , -measure and
its shannon entropy on a finite product space. Some properties of this g, ~
measure and its entropy are investigated. These properties are similar to
those obtained in the classical probability theory.

2. The g . -measure on a Finite Product Space

Throughout this paper, let X={x;,Xa...Xn}, Y={¥1,¥2...¥m} be two finite
sets, XX Y={(z5,¥;)| x:C X, y;C Y} be the finite product space, and P(Xx Y)
the power set of XxY. We assume the parameter X € (-1, YU (0, o0).

Definition 2.1 A set function g.: PExY)—>{[0, 1] is called a g, - |
measure on (XxY, PXxY)) iff it satisfies the following conditions:

(D) 0<gy<1 (I<i<n, I<j<m) and .
G121+ A gsy) = 143 @D

@ g®= - [ I __G+rgy -1 v B¢ PExY) @2)
Where g8 ({x¥))) (I<i<n, 1<j<m) (2.3)

The triplet XxY, P(XxY), g.) is called product g, —measure space.
For a product g, -measure space (XX Y, P(XXY), g.), let .

go= L. [ara)Z 0B A g ion) @.4)



g %T - [+ )z=;=110g1+ e 1] Q<ij<m) (2.5)
Obviously, we have

loga. » (+ A g3 )=2"3aloga. 5 (1+ A gs3) (2.6)

loga+ o (I+ A g.9)=37 311081+ A (1+ A gs3) 2.7

Proposition 2.1 Let (XxY, P(XxY), g.) be a product g , -measure
space. Then the set function g.®: P(X) »[0, 1] and g .®: P(Y) »[0, 1]
defined by

g-P@A-1- LI (438 -1 ¥ Ac PX)
E-P®=3 [T (+rg) -1 - Be P(Y)
are the g . —measures on (X, P(X)) and (Y, P(Y))[b,6], respectively.
Proof. Obviously.

Proposition 2.2 Let XxY, P(XxY), g, ) be a product g, -meagure
space. For an arbitrary fixed i (1<i<n) with g; =<0, if let

gum b - [ 208w » (B lloga s (2 g)] _ ©.8
Then a4 hgys) = 144
Proof. By (2.8) we have
logas » (1+ A gs3) = logas o (1+ A g51a) + 1082+ » (I+ A gs) 2.9

So it follows from (2.7) that
273aloga, » U+ A g50) = Z3-alloga. » (142 g1y [ loga, » (143 g5.)]
= logai.» A+ 2 g:)/logi 2 (142 gs) = 1
That is 52+ A gy = 1+ A,
Definition 2.2 Let XxY, PXxY), g.) be a product g, -measure
space. If '

1081+ » (1+ A gap) = logas » (143 g:) - logas » (1+ 2 8.0 (2.10)

Then g, is said to be independent with respect to X and Y, and for short,
g » 18 independent.

Proposition 2.3 If g, is independent and gi.-<0 (1<i< q), then
logis » (I Aggad=loga. » It 2 g5  (I<j<m)
Proof. TFollows from (2.9) and (2.10) evidently.



For 1<i<n, 1<j<m, let
Pi=loga, » (It A Bi),  Pa=loga, o (142 g:)
p.s=logi, » A+ 2 8.9, Pys=logi. » (1+ 2 g5s) 2.11)
and P = Dydnscam- |
Obviously, pi.=X"3}-1Pus P.=Z3-1Psj» Dis~Pyibs. (I<i<n, I1<j<m)
25D =2l = 2 - Y ahs; = 1
and aPss= 2 51 (Pas/Pa)=ps.[ps =1

Proposition 2.4 g, is independent if and only if the arbitrary two
rows (columms) in the matrix P are proportional.

Proof. By definition 2.2, the proof of necessity is obvious. All we

have to prove is the sufficiency. Here we consider the case of rows in P.

Suppose the arbitrary two rows in P are proportional. Especially,}
every row is proportional to the first row. Let

(Ps1 Psz - Pim) = Ki(Pas Pia ... Prm) (I<i<D) (2.12)
Then P = (ki ka ... k2 )T(P12 Paz ooo Prm) (2.13)
Therefore p;.=3"}api=k: 3 api=kips. (I<i<n).
ie. k; = pi./pr. (I€i<n) (2.14)
Consequently, |

P.; =2 GwaPir 23 kaP1=P1; D 31 kKe=py T b /D, (I<j<m)
i.e. Py = pp; (I<j<m)
Hence it follows from (2.13), (2.14) and (2. 15) that

P=( pa/pi - Pu./Pr)T®1.01 P1P.2 ... PrD.m)

= @ Pa ... p2)T(@1 P2 - Do) |
This means B = Pu.b.; (I<i<n, 1< j<m).
ie.  logy. . (14 gs)=logy, » (14 A ga)logs, » (14 285
Thus g, is independent. The proof is commplete,

3. The Entropy of Product g, -measure Space

In his paper[5], Kruse introduced the concept of entropy of g . -measure
space to measure the ”furziness”. In this section, westudledtheentropy
of product g, ~measure space.

Vg



Definition 8.1 Tet XxY, PXxY), g.) bea product g . -measure
space. The quantity
Hom({853)) = ~23-12"3alogr » (1+ A gidlog[loga, » (1+ A gs)]  (3.1)
(assume 0. log0 = 0)
is called the entropy of XxY, PXxY), g.).
For a fixed i with g; =<0 (1<i<n), the quantity
Hea({31)) = -2 loga. » (1+ A g5)log[loga, o (1+ A 8513 3.2)
is called the entropy of (Y, P(Y), g »®) given x-x,.
If g;.><0 for i=1,2,...n, then the average

Hx(Y) = Z3Ha({g5:1)1081+ » (1+ A g1.) 3.9
is called the conditional entropy of (Xx Y, PXxY), g.) given X.

Obvicugly, Howm({8:}) = -5 3 aDsslogps;
Hea({8513}) = = Z™3-apsislogpsis
Hx(Y) = 23-2H({851})ps.
Where pi;, pi., p.; and py; are given by (2.11).
Proposition 8.1 H,...({g;;}) is decomposiable, i.e.
Hom({8s5}) = Ha({g:.}) + Hx(Y) 8.4
Where H..({g:.})=—33-1p:.logp;. is the entropy of (X, P(X), g .)[5).

Proof. Ham({gss}) = = 22551 25 Ps;510gD;s;
= =23=12)"%1  Ps1Ps.log(pysps) _
= ~ 25127 3aPnsPs.108P:. — 3522 ™1DssPs. logps.
= ~ 251 [Pe.10gP: (Z5apis)] - T3 [Ps. (U ™aps1:108Ds1)]
= —25-aPalogps. —X 3 ({g5:)ps. = Ha({g:.}) + Hx(Y).
Proposition 3.2 If g, is independent, then
Hx(Y) = Ha({g.5}) (3.5)
Where Hu({g.;}) = -213-1p.logp.; is the entropy of (Y, P(Y), g .*)[5].
Proof. Since g, is independent, by proposition 2.3 we get D5 = p.;
(1< j<m). Therefore
Hx(Y) = 25-aHa({851: 5. = 25-2(Z3-1Ps1:108D3:)ps.
= 275-2(2"3-ap.slogp Jp:. = (Z3-api.) T "3-ap.slogp )
= 2"5ap.jlogp.; = He({g5:))-
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Combining proposition 3.1 with proposition 3.2, we have
Corollary 8.1 If g, is independent, then

Hoe({8ss)) = Ha({ge}) + Hol{g.s) @6
In general case, we have .
Proposition 3.3 Hx(Y) < Hu({g.5}) 3.7

Proof. Let ¢(x)=—xlogx (0<x<1) and ¢(0)=0. Then ¢ (x) is a convex
function on [0, 1]. It follows from the properties of convex function that
for every x;¢ [0, 1] and each a,>0 with 332, a =1,

25-10:9(X) < 9(X3-1a;x) 3.8
Especially, subtituting « s=p;. and X5:=py: (=1,2,...n) in (3.8) we have
= 23T i~1P. P513108Ps1a < (2 T-1Ds. Dpa)log (3 mabs. yya)
= ~(X5-1P1)10g(Z3-aps5) = -p.slogp.;
Hence Hx(Y) = 33 aHa({gy:})logas 2 (14 A g5)
= 251" aPislogPadbs. = 2 ™1 331D PsislogD; s
< —2"3ap.logp.; = Ha({g;.}).

Proposition 3.4. Let 1/n"=—[(+ )2 17, yme=» [+ 2)Y™- 1],
Then Hom({gy})<H.(/n", 1/n* ... 1/n*) + H.(I/m*, Im* ... I/m*)
Proof. H.(l/n*, 1/n* ... 1/n*) |
= ~31-alogs. » (1+ A /n*)log[logs. (14 A f0*)]
= -2 %5-al/n.log(1/n) = logn.
Similarly, H..(l/m*, 1/m* ... 1/m*) = logm.
Applying (3.4), (3.7) and congidering (3.8), we have
Hom({Bu}) = Ha({8:.}) + Ha(Y) < Ho({g..)) + H({g.))
= 25-apilog(l/ps) + 2™3ap.slog(l/p.y)
< log[ (pu./pi)] + log[ (p.s/p.5)]
= logn + logm = H.(1/n*, 1/n* ... 1/n%) + Hp(l/m*, 1/m* ... 1/m*) .
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