On the pseudo-null-additivity and the pseudoautocontinuity of fuzzy measures Xing Zhenxiang

Harbin College of Machinery and Electrical Engineering, Harbin 150076, P. R. China

Abstract: In this paper, the concept of pseudo-atom is introduced, and the equivalent property of the pseudo-null-additivity and the pseudo-autocontinuous is studied when the fuzzy measure is finite and the set X is countable.

Key Words: Fuzzy measure; psedo-null-addtivity; pseudo-autocontinuity.

1. Preliminaries

Let X be a nonempty set, \mathcal{F} is a σ -algebra of the subsets of X and $\mu: \mathcal{F} \rightarrow [0, \infty)$ be a fuzzy measure, i.e. with monotonity and continuity and $\mu(\phi)=0$. Throughout this paper, fuzzy measure space (X,\mathcal{F}, μ) is fixed. For convenience, we at first recall some definitions and propositions on fuzzy measures.

Definition 1 ([2]) A fuzzy measure is called pseudo-null-additive, if μ (BUC) = μ (C) whenever A \in F, B \in A \cap F, C \in A \cap F with μ (A-B) = μ (A).

Proposition 1 ([1]) The following statementes are pairwise equivalent:

- (1). μ is pseudo-null-additive;
- (2). μ (B \cap C) = μ (C) whenever $A \in \mathcal{F}$, B, $C \in A \cap \mathcal{F}$ with μ (A) = μ (B);
- (3). μ (CU (A-B)) = μ (C) whenever A \in F, B, C \in A \cap F with μ (A) = μ (B).

Definition 2 ([2]) A fuzzy measure μ is called pseudo-autocontinuous from above (resp. pseudo-autocontinuous from below), if for every $A \in \mathcal{F}$ and $\{B_n\} \subset A \cap \mathcal{F}$,

$$\mu$$
 (B_n) \rightarrow μ (A) μ ((A-B_n) \cup C) \rightarrow μ (C) (resp. μ (B_n \cap C) \rightarrow μ (C)

for every $C \in A \cap \mathcal{F}$; μ is said to be pseudo-autocontinuous, if it is both pseudo-autocontinuous from above and from below.

Proposition 2 ([1]). For a fuzzy measure, pseudo- autocontinuity from below (or from above) implies pseudo-null-additivity.

Proposition 3 ([1]). Let μ be a fuzzy measure, then μ is pseudo-autocontinuous from above if and only if μ is pseudo-autocontinuous from

below.

Definition 3. Given a nonempty class of sets $\xi \subseteq A \cap \mathcal{F}$, for every $x \in \bigcup_{B \in A - \xi} B$, denote $A_{\xi}(x) = \bigcap \{B: x \in B \subseteq A - \xi\}$. $A_{\xi}(x)$ is called the pseudo-atom on x of ξ .

Proposition 4. If C is a pseudo-atom on x of ξ , then for every $B \in A - \xi$, $x \in B$ implies $C \subseteq B$.

Proof. It is obvious by the Definition 3.

2. Main results

Lemma 1. If X is countable, then for every $A_n \in A \cap \mathcal{F}$ $(n=1, 2, \ldots)$, $\lim \sup (A-A_n) = \bigcup_{x \in T} A_x$. Where $A_x \in A \cap \mathcal{F}$ are pseudo-atom of $\xi = \{A_n\} \subset A \cap \mathcal{F}$ and T is a countable or finite index set.

Proof . Since X is countable, we may assume that

 $\lim \sup (A-A_n) = \{x_t : t \in T\},$

T is a countable or finite index set. As for every $x_t \in \bigcup_{B \in A_-} \in B$, there exists a pseudo-atom A_t on x_t of ζ , such that

 $\lim\sup\left(A-A_n\right)\subset\bigcup_{t\in\ T}A_t.$

On the other hand, for every $t \in T$ and $x_t \in l$ im sup $(A-A_n)$, there exists a subsequence $\{A_{t_n}\}$ of $\{A_n\}$ such that $x_t \in A-A_{t_n}$ (n=1, 2, ...). By the Proposition 4 and $A_t=A(x_t)$ we have that

At Clim sup (A-An),

so that

 $\bigcup_{\mathbf{t} \in \mathbf{T}} \mathbf{A}_{\mathbf{t}} \subseteq \lim \sup (\mathbf{A} - \mathbf{A}_{\mathbf{n}}),$

This shows that

 $\lim\sup\left(\mathbf{A}-\mathbf{A}_{\mathbf{n}}\right)=\bigcup_{\mathbf{t}\in\mathbf{T}}\mathbf{A}_{\mathbf{t}}.$

Theorem 1. Let X be a countable set, and $\mu: \mathcal{F} \to [0, \infty)$ be a fuzzy measure, then the pseudo-null-additivity is equivalent to pseudo-autocontinuity.

Proof. By the proposition 2 and 3, it suffices to show that the pseudo-null-additivity implies the pseudo-autocontinuity from above under the hypothesis. Suppose that the conclusion is false, then there exist $A \in \mathcal{F}$, ϵ o>0 and B_n , $C \in A \cap \mathcal{F}$ n=1, 2, . . . with μ (B_n) $\rightarrow \mu$ (A) such that

 $\mu \left(C \cup (A-B_n)\right) > \mu \left(C\right) + \varepsilon_{D}, \qquad (*)$

Since μ (B_n) converges to μ (A). First, we have that

 μ (A-lim sup (A-B_n)) = μ (A).

By the pseudo-null-additivity and (*), we have

 μ (C) = μ (1 im sup (A-B_n) \cup C)

> lim sup ((A-B_n) UC)

> lim sup (μ (C) + ϵ o)

 $= \mu (C) + \epsilon_0.$

It is a contradiction. Hence we complete the proof of the theorem.

References

- [1]. Sun Qinghe, On the pseudo-autocontinuity of fuzzy measure, J. Fuzzy Sets and Systems, 45 (1992) 59-68.
- [2]. Wang Zhenyuan, Asymptotic structural characteristics of fuzzy measure and their applications, J. Fuzzy Sets and Systems, 16 (1985) 277-290.