

FUZZY WEAKLY S-IRRESOLOTE MAPPINGS

Bai Shi-Zhong

Department of Mathematics, Yanan University, Yanan, China

ABSTRACT

In this paper, we introduce and study the fuzzy weakly S-irresolute mapping in fuzzy topological spaces which is the weaker form of fuzzy S-irresolute mapping and is the stronger form of fuzzy precontinuous mapping.

Key words: Fuzzy topological spaces; fuzzy preopen sets; fuzzy strongly semiopen sets; fuzzy weakly S-irresolute mapping.

1. PRELIMINARIES

In this paper, A° , A^{-} and A' will denote respectively the interior, closure, and complement of the fuzzy set A. A fuzzy set A of a fuzzy space (X, δ) is called (1) a fuzzy strongly semiopen set of X iff there is a $B \in \delta$ such that $B \leq A \leq B^{-\circ}[1]$. (2) a fuzzy strongly semiclosed set of X iff there is a fuzzy closed set B in X such that $B^{\circ} = A \leq B[1]$. (3) a fuzzy preopen set of X iff $A \leq A^{-\circ}[4]$. (4) a fuzzy preclosed set of X iff $A \geq A^{\circ}[4]$. A mapping $f:(X,\delta) \to (Y,\tau)$ from a fuzzy space X to another fuzzy space Y is called (1) a fuzzy strongly semicontinuous mapping if $f^{-1}(B)$ is a fuzzy strongly semiopen set of X for each $B \in \tau$ [1].(2) a fuzzy precontinuous mapping if $f^{-1}(B)$ is a fuzzy preopen set of X for each $B \in \tau$ [4]. (3) a fuzzy S-irresolute mapping if $f^{-1}(B)$ is a fuzzy strongly semiopen set of Y[2].

Definition 1.1. Let A be a fuzzy set of a fuzzy space (X,8). Then

 $A^{\Delta} = \bigcup \{B: B \leq A, B \text{ fuzzy strongly semiopen}\},$

 $A^{\sim} = \bigcap \{B: A \leq B, B \text{ fuzzy strongly semiclosed}\},$

 $A_{\Delta} = \bigcup \{B: B \leq A, B \text{ fuzzy preopen}\}$

 $A_{\sim} = \bigcap \{B: A \leq B, B \text{ fuzzy preclosed}\}\$

are called the strong semi-interior[1], strong semi-closure[1], pre-interior and pre-closure of A respectively.

2. FUZZY WEAKLY S-IRRESOLUTE MAPPINGS

Definition 2.1. Let $f:(X,\delta) \to (Y,\tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is called a fuzzy weakly S-irresolute mapping if $f^{-1}(B)$ is a fuzzy preopen set of X for each fuzzy strongly semiopen set B of Y.

Definition 2.2. Let $f:(X, \delta) \to (Y, \tau)$ be a mapping from a fuzzy space X to another fuzzy space Y, f is said to be fuzzy weakly S-irresolute at a fuzzy point p in X, if fuzzy strongly semiopen set B of Y and $f(p) \leq B$, there exists a fuzzy preopen set A of X such that $p \leq A$ and $f(A) \leq B$.

Theorem 2.3. Let $f: (X, \mathcal{S}) \rightarrow (Y, \tau)$ be a mapping from a fuzzy space X to another fuzzy space Y. Then the following are equivalent:

- (1) f is fuzzy weakly S-irresolute.
- (2) $f^{-1}(B)$ is a fuzzy preclosed set of X for each fuzzy strongly semiclosed set B of Y.
 - (3) $f(A_{\sim}) \leq (f(A))^{\sim}$ for each fuzzy set A of X.
 - (4) $(f^{-1}(B))_{\sim} \leq f^{-1}(B^{\sim})$ for each fuzzy set B of Y.
 - (5) $f^{-1}(B^{\Delta}) \leq (f^{-1}(B))_{\Delta}$ for each fuzzy set B of Y.

Theorem 2.4. A mapping $f:(X,\delta) \rightarrow (Y,\tau)$ is fuzzy weakly S-irresolute iff is fuzzy weakly S-irresolute for each fuzzy point p in X.

Theorem 2.5. Let $f:(X,\mathcal{S})\to (Y,\tau)$ be one-to-one and onto, where X and Y are fuzzy spaces. f is a fuzzy weakly S-irresolute mapping iff $(f(A))^{\Delta} \leq f(A_{\Delta})$ for each fuzzy set A of X.

Theorem 2.6. Let X_1 , X_2 , Y_1 and Y_2 be fuzzy spaces such that X_1 is product related to X_2 . Then the product $f_1 \times f_2: X_1 \times X_2 \rightarrow Y_1 \times Y_2$ of fuzzy weakly S-irresolute mappings $f_1: X_1 \rightarrow Y_1$ and $f_2: X_2 \rightarrow Y_2$ is fuzzy weakly S-irrselote.

Remark 2.7. For the mapping $f: X \rightarrow Y$ the following statements are valid:

f fuzzy S-irresolute => f fuzzy weakly S-irresolute => f fuzzy precontinuous.

None is reversible.

Proposition 2.8. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be mappings. Then the following statements are valid:

- (1) If f is fuzzy weakly S-irresolute and g is fuzzy S-irresolute, then $g \circ f$ is fuzzy weakly S-irresolute.
- (2) If f is fuzzy weakly S-irresolute and g is fuzzy strongly semicontinuous, then gof is fuzzy precontinuous.

REFERENCES

- [1] Bai Shi-Zhong, Fuzzy Sets and Systems, 52(1992) 345-351.
- [2] Bai Shi-Zhong, Fuzzy Sets and Systems, in press.
- [3] C.L.Chang, J.Math.Anal.Appl.24(1968) 182-190.
- [4] A.S.Mashour, M.H.Ghanim and M.A.Fath Alla, Bull. Calcutta Math. Soc., 78(1986) 57-69.
- [5] Pu Pao-Ming and Liu Ying-Ming, J.Math.Anal.Appl., 76(1980)571-599.