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CONSTRAINT LOGIC PROGRAMMING AND INTUITIONISTIC FUZZY LOGICS
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The idea that a connection exists between the concepts of
Constraint Logic Programming (ICLP) 11] on one hand and that of
Intuitionistic Fuzzy Sets (IFSs) (2,3} and Intuitionistic Fuzzy
Logics (IFLs) [4-7] on the other hand, is discussed.

On the basis of these concepts, the concept of "Intuitionis-
tic Fuzzy Constraint Logic Programming" (IFCLP) is introduced.

Initially, we shall give some remarks on IFLs.

To each proposition (in the classical sense) one can assign
its truth value: truth - denoted by i, or falsity - 0. In the ca-
se of fuzzy logics this truth value is a real number in the in-
terval [0, 1] and can be called "truth degree" of a particular
proposition. In [4] we add one more value - "falsity degree" -
which will be in the interval [0, 1] as well. Thus one assigns to
the proposition p two real numbers p(p) and r(p) with the fol-
lowing constraint to hold:

p(p) + rv(p) < 1.
Let this assignment be provided by an evaluation function V
defined over a set of propositions S in such a way that:
V(p) = <p(p):, 7(P)>.
Hence the function V: S --> [0, 1] x [0, 1] gives the +truth
and falsity degrees of all propositions in S.
We assume that the evaluation function V assigns to the logi-
cal truth T: V(T) = <i, 0>, and to F: V(F) = <0, t{>.
The evaluation of the negation 1p of the proposition p will be
defined through:
vp) = <v(p), p(P)>.
Obviously, when 7v(p) = 1 - p(p), 1.e.
V(p) = <p(p), &t - p(P)>,
for 1p we get:

V() <t - p(p)y p(P)>,
which coincides with the result for ordinary fuzzy 1logic (see e.
€., [8]).
when the values V(p) and V(q) of the propositions p and q are
Known, the evaluation function V can be extended also for opera-
tions "&", "v" through the definition
V(p & qQ) = <min(p(p), p(q)), max(v(p), v(q))>,
V(p x q) = <max(p(p), p(q)), min(v(p), 7(q))>,
Depending on the way of definition of the operation "D" diffe-
rent variants of IFPC can be obtained. Here we shall use the va-
riant called in {4] "max-min":



V(p D q) = <max(r(p), v(q)), min(p(p), 7(q))>
By analogy with the operations over IFS it will e convenient
to define for the propositions p, q € S:
WV(p) = V(Ip),
V(pP) ~ V(q) = V(P & q),
V(P) v V(q) = V(p % q),
V(p) - V(q) = V(p D q).
For the needs of the discussion below we shall define the no-
tion of intuitionistic fuzzy tautology (IFT) through:
"A is an IFT" iff "if V(A) = <a, Db>», then a : b".
In [5] are defined the following IF-interpretations of the
modal operators

vop) = <a, 1-a>,
V(O0p) = <i-b, Db>
and
0 vV(p) = V(DP),
¢ V(p) = V(OP),
where V(p) = <a, b>. Here we shall define analogously of the ope-

rators defined over IFS with the forms (a, B € [0, 11):
V(Da(p)) =z <a + (1 - a->b), b+ ({ ~ax).(1 - a->n))

<a + . (1 ~a ~-Db), b+ B (1 -a->»h)) and a + B € 1

V(F
( o B(P))

V(G (p)) = <a.a, B.Db)
o, B

V(H (P)) = <a.a, b + B. (1 - a - b)>
«, B

V(J (P)) - <a + «. (1 - a - b), B.b>
«, B

V(H (p)) = <a.a, b + B.(1 - «x.a - b)>
o, B

v(J
o g®)

The definition for the quantifiers 1s as follows (see ([6]):

V(VXA) = <min p(A), max v(A)>
X€ER XEE

<a + . (1 - a - B.b), B.b>

and

V(3xA) = <max p(A), min v(A)>.
X€EE X€B

We must note, that these operators are not studied in the fra-
mes of the modal logic, vyet.

Let p Dbe a proposition and let V be a truth-value function,
which juxtaposes to the proposition p and to the time-moment +t €
T (T is a fixed set which we shall call "time-scale" and it 1is
strictly oriented by the relation "<") the ordered pair:

Vip,t) = <p(p,t), 7(p,1)>.
Let



1"

T f(t'/t’ € T & £’ < t}
T ft"/t" € T & t" > t}
We shall define for given p and t the operators P(p,t), F(p,t),
H(p, t), G(p,t): [0, 1) x [O, 1] x T -> [O, 1} X [O, 1] x T, for
which:

X(p,t) = X(<p(p,t), 7(pP,t)>)
for X € {P, F, H, G} and:
- V(P(p,t)) = <p(pyt’), r(p,t’)>,
where t° € T’ satisfies the conditions:
(a) p(p,t’) - 7v(p,t’) = max (p(p,tx) - rv(p,tn)),
tReT’

(b) if there exist more than one such element of T’, then t’
is the maximal.
- V(F(p,t)) = <p(p,t"), 7(P,t")>,
where t" € T" satisfies the conditions:

(a) p(p,t") - 7(p,t") = max (P(p,tx) - v(p,tn)),
taeEDT"”
(b) 1f there exist more than one such element of T", then +t*

is the minimal.
- V(H(Pp,t)) = <p(p,t’), 7(P,t")>,
where t' € T’ satisfies the conditions:
(a) p(p,t’) - v(pP,t’) = min (p(p,t*) - 7(P, tx)),
txeT’
(b) 1f there exist more than one such element of T’, then t’
is the maximal.
- V{G(p, 1)) = <p(p,t"), v(pP,t")>,
where t" € T" satisfies the conditions:

(a) p(p,t") - v(p,t") = min (P(p,tx) - 7(p, tx)),
treT"
(b) 1f there exist more than one such element of T", then t"

is the minimal.
* *

Below, we shall follow the exposition and terminology of the
paper {[4] and we shall introduce the elements of the IFCLP. Thus
the comparison between both these texts will be saved labour,.

Let SORT = U{SORTI} denote the finite set of sorts in questi-

on. A signature of an n-ary function (predicate, variable) symbol
f is a sequence of n+i{ (resp. n, 1) elements of SORT. By the term
sort of f, we mean the last element in the signature of the func-
tion symbol £, The symbols T and II denote denumerable collections
of function symbols (and their signatures) and predicate symbols
(and their signatures) respectively. Let W denote a collection of
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variables, o0(I) and o(I U W) denote, respectively, ground terms
and the terms possibly containing variables. An atom 18 of the
form p(tl, ta...., tm), where p is an m-ary symbol in I and ti €

o(L U W) ana V(ti) € [0, 1] x [0, 1], for every i (1 < 1 ¢ m) and

Vip(t , t_,..., t)) € [0, {] x [0, {].
1 2 m

A structure is defined over alphabets II and ¥ of predicate and
function symbols, where II contains the equality symbol *=", which
needs no signature. Such a structure R(I, II) consists of:

(a) a collection DR of non-empty sets DRs' vwhere s ranges over

the sorts in SORT;
() an assignment, to each n-ary £ € ¥, of a function

DR X DR X ... X DR -> DR ,
s s s s
i 2 n
where (si. sa...., sn. 8) 18 the signature of f;
(c) an assignment, to0 each n-ary p € II, excepting the symbol ":=*,
of a function DRs X DRs X ... X DRS € [0, 1] x [O, {1,
1 2 n
where (si. sa,..., sn) is the signature of p.

An atomic (I, %)-constraint is simply an atom over +the alpha-
bets ¥ and H; a (II, I)-constraint is a possibly empty finite set
of those atoms. Intuitively, a constraint can be a logical expre-
ssion of atomic constraints connected by logical .operations con-
junction, disjunction, negation, implication, by modal operators
"necessity" and "possibility" and their IF-extensions (the opera-

rators D, F y G ., etc.) and by temporal operators (in con-
o o, B o, B

trast to [1}], where it can be only a conjunction of atomic con-
straints).

A R(II, ¢)-valuation on an expression over Il and I is a mapping
from each distinct variable in the expression into DRs' where s

is the sort of the variable in question. Where © is a R(II, })-va-
luation on the term t, we write t© to denote the appropriate ele-
ment in DRs' where s is the sort associated with +t. Similarly,

where € 18 a R(II, X)-valuation on the atomic (II, I)-constraint c,

¢© denotes the proposition such that either

(a) R(I, %) + ¢cO® (i.e. ¢cO is an IFT)

or

(b) R(II, ) + 1¢c® (i.e., ¢© is an IF false, i.e., if V(1co) =
<a, b>», then a < b).

If C is a possibly infinite set of atomic (II, %)-constraints, we



write
(a) R, X) - Co, if for all c¢c € C R, T) + cO©
(b) R(II, %) - 1CO, otherwise,.

Whenever (a) holds, we say that C is R(Il, I)-solvable and that ©
is an R(II, f)-solution of C.

where A = p(ti, ta,.... tn) is a (ﬂp. L)-atom and © a (n, %)-
valuation of t , t ,..., t , let A© denote p(t o, t+ O,..., t ),
1 2 n 1 2 n
The R(Il, Y)-base of a program P 13 then given bdby:
fp(x , X ,... X )6:
P( ' o' ' n)

P is an n-ary symbol in IO and
© is a (I, I)- valuation of the variables

X X P X .
11 ar ’ n}

If S is a subset of the R(II, %)-base of a program P, we write
(S)p to denote the subset of S containing elements associated

with the predicate symbol p € Hp. An R-model of a program P is

given by a subset I of the R-base such that for every rule in P

A <- (¢ B, B,..., B
(c 1| g 2’ n)
where n » 0, and for every valuation € on A, ¢, B , Ba...., B,
such that 9 is an R-solution of ¢, {Bie, Bae""' Bne] c I impli-

es A9 € 1I.

Here we shall add to the text of ([1] the following possible
constructions base on the constructions in InF-PROLOG ([8}.

Initially, we must note, that the right-hand part of the rule
has some truth value which is obtained by the function V and
which is an element of the set [o, 1} x (o, 111. We can somehow
calculate the truth value of the left-hand part of the rule. In
general, the rules of P can have one of the following forms:

(1) A <~ (C ' Bo B:-"n B; pv 7)1
i 2 n
(2) A <- (¢} B, B,..., B; M, H),
i 2 n
where M, N Cc [0, 1] and supM + supN € 1,
3) A; M, N <- (c B, B,... B; M, N
(3) 4 $ ( | ' 2’ v B 2 2),

where Hi. Hi c [0, 1] and supH1+ SuPN1 < 1 and

M, Ha c [0, 1] ana supH2 + supue < 4,

2
(4) A; X <- (¢ { B, B,..., B), where o, B € [0, 1)},
, B 1 2 n _
where X € {b, F {in this case a + B € 1), G , H » H .
a o, B a, B a, B o, B
J y J 1 or a combination of them.

o, B o, B



The sense of these forms is as follows:
Case 1: 1f <a, b> is the truth-value of the right hand and a > p

and b < 7, then A also receive the value <a, b>; else the
rule is not activated.

Case 2: if <a, b> is the truth-value of the right hand and a € M
and b € N, then A alscoreceive the value <a, b>; else the
rule is not activated.

Case 3: 1f <a, b> is the truth-value of the right hand and a € Ha
and b € Ha, then A receive the value

otherwiss the rule is not activated.
Case 4: if <a, b> is the truth-value of the right-hand part, then
A receive the value X <a, b>.

o,

Let 4 = p(di...., d ) be an element in the R-base of a struc-
n

ture R(II, ¥). We say that 4 is (finitely) definable if there 18 a
(finite) possibly infinite set of (I, ¥)-constraints c(xi,...,xn)

containing distinguished variables xi, v ey xn such that one
R(ll, ¥)-solution of ¢ maps xi..... xn into di""' dn respective-

1y. The element d is definable uniquely if all R(, I)-solutions
of a maps xi..... X 1into di""' dn respectively. An element 1is
n

a limit element if it is definable uniquely but not by means of a
(finite) (H, %)-constraint.

A (many-sorted) first-order theory I(HI, I) is a set of well-
formed formulas over the alphabets I and ¥ where formulas are de-
fined in the usual way. A (ground) d(ll, I)-substitution is a fini-
te set of the form {(x /t , X /t ,..., X /7t } where

1 i 2 2 n n

(a) the ti (1 < 1 < n) are (ground) terms over ¥ which do not
contain any occurrences of x J(1 € J <€ n)
{(b) x1 and ti have the same sort (1 < i1 < n). For these substitu-

tions, we define the notions of applications, composition and
relative generality in the usual manner, e.g., we say that a
substitution © is more general than [, denoted by [ SI o, if

there exists a (II, §)-substitution 8 such that I + (T
We shall sometimes associate a substitution

0 = t , t ,..., X /t
{xi/ A xal 2 n/ n,

93).
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A A
with a system of equations, denoted by 6, as follows © = ixlzt1

X =t ,..., X =t }
2 @2 nn

A (I, I)-constraint ¢ such that I(H, £) - 3c, where 3c is the
existential closure of ¢, is said to be I(Y, N)-satisfable. A 1I-
satisfier © of a (X, H)-constraint ¢ is an R(E, H)-substitution
such that I(ll, ) +~ c©F for all (¢, II)-substitutions [ of co.
Clearly I(Il, L) + cOf implies that ¢ is I(ll, ¥)-satisfiable. A
most general I-satisfier © of a (£, MH)-constraint ¢ 1is al-satis-
fier of ¢ such that T SI © for all I-satisfiers [ of c.

A constraint logic program is defined over (sorted) alphabets
np and Y% where np N IO :- ¢g. Such a program consists of a finite

set of constraint rules, this last being of the form
A <- (¢ }|) or

A<K-(c | B, B,..., B
( 1 2 n)

where ¢ is a possibly empty (3, H)-constraint and A and Bi (4 € 1
¢ n) are atoms over Hp and Y. A goal is also defined over (sor-
ted) alphabets np and 3, and it is of the form

<- (¢ 1) or

<- (¢ | B B,..., B
¢ ' T2 n)

where ¢ is a possibly empty or infinite set of (II, ¥)-constraints
and B1 (1 £ 1 ¢ n) are atoms over np and §; a finite goal conta-

ins only a (finite) (II, %I)-constraints; a unit goal contains only
one (np, I)-atom.

These constructions (from [1]) can be generalized to each of
the forms (1) - (4), described above. Let the last form of the
rules be noted by (0).

The function T(P R) maps from and into the R-base:

T (S) = {d € R-base:
(P, R, 1)

there exists a rule in P from form (i)
and a R-valuation © such that
(a) R (A© = Q)

(b) R + ¢cO©
(c) iIBo9, Bo,..., B O} c S}
i 2 n
Using T(P R i)(S) we can build in a natural way, the following
Kinds of sets, where « is a (not necessaryly finite) ordinal,
| 0 = ¢

T
(P, R, 1)



T I (ax + 1) = if o is a successor ordinal then
(P,R, 1)
T (T A )
(P,R, 1) (P,R, 1)
else
u{T ., over all < «
{ (P.R, 1) I Bl B
and
T ! 0 = R-base
(P, R, 1)
T i (ax + 1) = if a 18 a successor ordinal then
(P, R, 1)
T (T v )
(PIRD 1) (P|R' 1)
else
NET , over all < a .
{ (P.R, 1) | B} B8
We now define the counter-part of this function T , this

(P, R, 1)
time with respect to a corresponding theory I.

After this we shall extend the truth value function V to a
function related to a temporal parameter 2z. Each of the forms
(0) - (4) can be extended to the form for which the truth value
of the right-hand part is <a(z), b(z)> and the calculation of the
left-hand part 1is as above. Now we shall obtain essentially new

extension of the objects, described in [1]). The function T(P R, 1)
s Ny

defined in [1] maps from and into unit goals. How it has the form
(we shall use the symbol "-" +to denote finite sequences of ob-

jects such as terms, atoms, etc. and let for the object ;. arg(i)
is the 1list of all different arguments of such a sequence):
T S) = {<~(c | i :
(P,R.i,z)( ) { p(x))
there exists a rule in P of the form (i) and z is an

element of some (fixed) temporal scale and z € arg(i)
1) <-(c ), ..., t
P(t) ( o | pi( 1) pn( n))

(for case (0); for the other cases, the rule has the
respective form) where
(a) for each { < 1 ¢ n
there exists <-(c { b4 € S
( i Pi( 1)

which share no common variables, such that

¢’ = ¢c U (X =% ,..., X% =t 3 VU C,..., €}
(¢) 1 i n n 1

1s I-satisfiable;

(b) ¢ = ¢’ U §x = t} 3.



For brevity, we shall write the rules only in form (0) but
they can be in the other forms, too.

Let [<-(¢ | P({))] denote all those elements in the R-base as-
sociated with the symbol p obtained by R-instantiating variables
in ¢ s0 as to obtain a true value, i.e.

[<-(c | P(t))] = (P(x)®: © is a R-solution of ¢ U {X = t} }.
Similari <-(c t),..., t denotes
Y, [<-(c | Pi( 1). PK( k))]
Ufp (x )©: © is a R-solution of ¢ U fx = ¢+ } U ...U fx =t }.
10 1 1 n n
Where P is a constraint logic program, a (P, R)-derivation

step from a (not necessarily finite) goal

<- (¢ { A, A ,..., A
1 2 n)

results in a goal of the form

<- (¢ 1| Bi' Ba,..., Bn)

i1f there exist n variants of constraint rules in P with no vari-
ables in common with G and with each other

A’ <-(cC ﬁ

g <Tteyg B
A’ <-(¢ | é

2 <7, 2!
A’ <-(c_ | B)

n n n

such that ¢ is ¢ Uc U... Uc U (A = A’, ..., A = A’} and ¢

is R-solvable.

This paper is based on [9].

The described constructions are a basis of the following pro-
blems, which will Dbe objects of disscussion in other papers of
ours:

1. To show that every ordinary program in the frames of the con-
straint logic programming can be realized by means of InF-

PROLOG.
2. To construct an extension of InF-PROLOG containing the rules
of the forms (0) - (4) in the temporal case (the rules on InF-

PROLOG are in non-temporal variants of the forms (0) - (4)).
3. To construct constraint and temporal expert systems as exten-
sions to the ordinary expert systems.
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