FUZZY W-PRE-SEMICONTINUOUS MAPPINGS

Ye Xiao-Hong

Department of Mathematics, Yanan University, Yanan, China

Abstract

In this paper we introduce and study the fuzzy w-pre-semicontinuous mapping on fuzzy topological spaces.

Key words: Fuzzy regular open sets; fuzzy pre-semiopen sets; fuzzy w-pre-semicontinuous mappings.

1. PRELIMINARIES

In this work, A° , A^{-} , A_{\circ} , A_{-} and A' will denote respectively the interior, closure, semi-interior, semi-closure and complement of the fuzzy set A. Let A be a fuzzy set of a fuzzy space X. Then A is called (1) a fuzzy pre-semiopen set of X iff $A < (A^{-})_{\circ}$; (2) a fuzzy pre-semiclosed set of X iff $A > (A^{\circ})_{-}[4]$. A mapping $f: X_{1} \rightarrow X_{2}$ is called fuzzy pre-semicontinous if $f^{-1}(B)$ is a fuzzy pre-semiopen set of X_{1} for each fuzzy open set B of $X_{2}[4]$.

2. FUZZY W-PRE-SEMICONTINUOUS MAPPINGS

Definition 1. A mapping $f: X_1 \rightarrow X_2$ from a fuzzy space X_1 to another fuzzy space X_2 is called a fuzzy w-pre-semicontinuous mapping, if $f^{-1}(B)$ is a fuzzy pre-semiopen set of X_1 for each fuzzy regular open set B for X_2 .

Theorem 1. Let $f: (X_1, \delta_1) \rightarrow (X_2, \delta_2)$ be a mapping. Then the following are equivalent:

- (1) f is fuzzy w-pre-semicontinuous.
- (2) $f^{-1}(B)$ is a fuzzy pre-semiclosed set of X_1 for each fuzzy

regular closed set B of X2.

- (3) $((f^{-1}(B^{\circ -}))^{\circ}) < f^{-1}(B)$ for each $B' \in \delta_2$.
- (4) $f^{-1}(B) < ((f^{-1}(B^{-o}))^{-})_o$ for each $B \in \delta_2$.
- (5) $((f^{-1}(B))^{\circ}) \le f^{-1}(B^{-})$ for each fuzzy semiopen set B of X_2 .
- (6) $f^{-1}(B^{\circ}) < ((f^{-1}(B))^{-})_{\circ}$ for each fuzzy semiclosed set B of X_2 .

Definition 2. Let $f: X_1 \rightarrow X_2$ be a mapping from a fuzzy space X_1 to another fuzzy space X_2 , f is said to be fuzzy w-pre-semicontinuous at a fuzzy point e in X_1 , if fuzzy regular open set B in X_2 and f(e) < B, there exists a fuzzy pre-semiopen set A in X_1 such that e < A and f(A) < B.

Theorem 2. A mapping $f: X_1 \rightarrow X_2$ is fuzzy w-pre-semicontinuous iff f is fuzzy w-pre-semicontinuous for each fuzzy point e in X_1 .

Theorem 3. Let $f: X_1 \rightarrow X_2$ be fuzzy w-pre-semicontinuous mapping. Then

(1) $((f^{-1}(B))^{\circ}) < f^{-1}(B^{\circ -})$ for each fuzzy strongly semiopen set [3]

B of X_2 .

(2) $f^{-1}(B^{-0}) < ((f^{-1}(B))^{-1})_o$ for each fuzzy strongly semiclosed set [3] B of X_2 .

Theorem 4. Let X_1 , X_2 , Y_1 and Y_2 be fuzzy spaces such that X_1 is product related to X_2 and Y_1 is to Y_2 . Then the product $f_1 \times f_2$: $X_1 \times X_2 \longrightarrow Y_1 \times Y_2$ of fuzzy w-pre-semicontinuous mappings $f_1: X_1 \longrightarrow Y_1$ and $f_2: X_2 \longrightarrow Y_3$ is fuzzy w-pre-semicontinuous.

Remark 1. For the mapping $f: X_1 \rightarrow X_2$, the following statements are valid:

- (1) f is fuzzy pre-semicontinuous==>f is fuzzy w-pre-semicontinuous.
- (2) f is fuzzy almost precontinuous [2] ==> f is fuzzy w-pre-semicontinuous.
- (3) f is fuzzy almost semicontinuous [2] ==> f is fuzzy w-pre-semicontinuous.

The converses of (1) - (3) need not be true.

Example 1. Let X={a, b, c} and A, B, C, D be fuzzy sets of X defined as follows:

A(a) = 0.2 A(b) = 0.4 A(c) = 0.5;

B(a) = 0.8 B(b) = 0.8 B(c) = 0.6;

 $C(a) = 0.3 \quad C(b) = 0.2 \quad C(c) = 0.4;$

D(a) = 0, 1 D(b) = 0, 2 D(c) = 0, 3.

Let $\delta_1 = \{0, A, B, 1\}$, $\delta_2 = \{0, D, C, 1\}$. Consider the identity mapping $f: (X, \delta_1) \rightarrow (X, \delta_2)$. Clearly f is fuzzy w-pre-semicontinuous. But f is not a fuzzy almost semicontinuous mapping, nor a fuzzy almost precontinuous mapping, nor a fuzzy pre-semicontinuous mapping.

Proposition 1. Let f: X-Y and g: Y-Z be mappings. If f is fuzzy presemicontinuous and g is fuzzy almost continuous, then g f is fuzzy w-pre-semicontinuous.

Theorem 5. Let $f: X_1 \rightarrow X_2$ be a mapping from a fuzzy space X_1 to a fuzzy semiregular space X_2 [1]. Then f is fuzzy w-pre-semicontinuous iff f is fuzzy pre-semicontinuous.

Acknowledgement

The author is thankful to Prof. Bai Shi-Zhong for his valuable remarks and suggestions.

References

- [1] K. K. Azad, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] Bai Shi-Zhong, BUSEFAL, 51 (1992), 102-104.
- [3] Bai Shi-Zhong, Fuzzy sets and systems, 52 (1992), 345-351.
- [4] Bai Shi-Zhong, ICIS' 92, 918-920.
- [5] Pu Pao-Ming and Liu Ying-Ming, J. Math. Anal. Appl. 76 (1980), 571-599.