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1. Introduction.

The notions of closure operator and closure system are very useful tools in several
sections of classical mathematics. As an example, we may quote the closure systems
and the related closure operators given by, the class of closed subsets of a given
topological space, the class of substructures of a given algebraic structure, the class
of filters of a given Boolean algebra, the class of convex subsets of a given Euclidean
space. This leaded several authors to investigate about the closure systems and the
closure operators in the framework of fuzzy set theory. As an example, see Biacino
and Gerla [1984] , Murali [1991], Biacino [1993].

Let S be any set, denote by U the unitary real interval and recall that a fuzzy
subset of S any map s:S—U (see Zadeh [1965]). We say that s is crisp provided that
s(x) €{0,1} for every xeS. We indicates by §(S) the class of the fuzzy subsets of S
and by P(S) the class of the subsets of S, respectively. We identify P(S) with the
class of crisp fuzzy subsets of S, namely we identify any X e P(S) with the related
characteristic function xx:-

In this paper we propose an ”extension principle” enabling to extend any classical
operator J:P(S)-P(S) to an operator J*:F(S)—F(S) in such a way that J is a closure
operator if and only if J* is a closure operator. Also, we examine a related
”extension principle” to extend a class C of subsets of S in a class C* of fuzzy subsets
of S in such a way that C is a closure system if and only if C* is a closure system.
This enables us to restate in an uniform way several basic notions in fuzzy set
theory, such as the ones of natural fuzzy topology, fuzzy subalgebra, necessity
measures, fuzzy convex subsets and so on. Moreover, the application of such
extension principles to the of classical deductive systems suggests the formulation of

a promising class of fuzzy logics. We omit the proofs that can be founded in Gerla
[1993].

2. Preliminaries. |
In the sequel we adopt the convention that, if (S, <,0,1) is any ordered set with
minimum 0 and maximum 1, then least upper bound of the empty class is 0 and the

greatest lower bound is 1, that is Sup(#)=0 and Inf(9)=1. If A, and A, are elements
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of U, we set A;vig=Max{,A5} and A; adg=Min{);,},}. Given 5,5’ ¢ F(S), we say
that s is contained in s’ and we write s C s’ provided that s(x) <s’(x) for every x €S.
Also, the union sus’ is defined by setting (s Us’)(x)=s(x) vs'(x) and the intersection
sNs’ by setting (s Ns’)(x)=s(x) as’(x) for every x eS. More generally, given a family
(s;); o 1 of fuzzy subsets of S, we set

Uj; o 1%)®)=Sup{s,(x)/ieI} and (N  1%)(x)=Tnf{s,(x) /i  I}.
Finally, the complement —s of s is defined by —s(x)=1-s(x). Given a fuzzy subset s
of S, for every A € U the subset C(s,\)={x €S | s(x) > A} is called the closed A-cut of s
and
O(s,))={x€S | s(x)>A} is called the open A-cut of s. The support Supp(s) of s is
defined by Supp(s)={xeS | s(x) # 0}. We say that s is finite if Supp(s) is finite. The
following, are the main properties of the cuts

2) CeUSW=CemUCEM 5 O(sUs)=0(s)UO(E )
b) Clens'w)=Cleu)nC(ssw)  ; O(sns’u)=0(s,u)nO(s')
c) C(s,u)= Ny < ,,O(Sa’\) i O(s,m)= U >u C(s,)

d)  C(s,Sup; cIN)= N; . 1C(sA) 5 O(s,Inf; iel 1) ie 10(s:X)
€) C(ﬂsiv\)_ﬂc(s ) ) O(Usl”\) UO( A).

where s, s” € #(S), \peU, (A )1 1 is a family of elements of U and (s;); o is a family
of fuzzy subsets. A fuzzy subset is characterized by its cuts, indeed

s(x)=Sup{reU | xeC(s,)}. (2.1)

s(x)=Sup{re U | xe O(s,2)}. (2.2)

More generally, any family (C,) AU of subsets of S defines a fuzzy subset as

follows

s(x)=Sup{reU | xeC,}. (2.3)

Lemma 2.1 Let (C,) AeU be any decreasing family of subsets of S, and define s by
(2.3), then, for every ueU

O(s,p) = U Cy € C, € N Cy =C(s,m). (2.4)
A>p A<y

We call continuous any chain (Cy)y ey of subsets of S such that Cy=S and

Cy=N C,. The following proposition shows that we may identify the fuzzy

subse%s” of S with the continuous chains of subsets of S (see Negoita and Ralescu
[1975]).

Proposition 2.2 Given a fuzzy subset s the family (C(s,))) re U Of its closed cuts is
a continuous chain. Conversely, given any continuous chain (C,) xc U Of subsets of S
define s by (2.3). Then s is a fuzzy subset such that C(s,u)=C u for every neU.



3. Closure operators.

Recall that, given a set S, a (classical) closure operator in P(S) is a map
J:P(S)—-P(S) such that, for every X and Y subsets of S,

(i) XcY=2IJX)cJY) (Gi) XcIX) Gi) JIX)=IX).

A collection C of subsets of S is a closure system if the intersection of any family
of elements of C is an element of C. In particular, since S is the intersection of the
empty family, SeC. It is well known that if J is a closure operator then the set
C;={X | J(X)=X} is a closure system and that if C is a closure system then, by
setting Jo(X)=N{Y eC | Y 2 X} we obtain a closure operator Je.

To extend such concepts to fuzzy set theory, we call fuzzy operator, in brief
operator, any map J from F(S) to F(S) and we say that J is a fuzzy closure operator,
in brief a closure operator, provided that

() sco= 1)) 5 () scIe) () II(E)=).

Likewise, a class C of fuzzy subsets of S is called a fuzzy closure system, in brief a

closure system, if the intersection of any family of elements of € is an element of C.
Proposition 3.1 A fuzzy closure system C is a complete lattice in which
- the meets coincide with the intersections in F(S);

- the join of a family (s;); 1 of elements of Cis N{seC|s2 Us;}.

The following proof, whose proof is immediate, shows that the notion of fuzzy

closure system is strictly related with the one of fuzzy closure operator.

Proposition 3.2 Let C be a class of fuzzy subsets, then the operator Je defined by

Je(s)=N{s’eC|s’2s} (3.1)
is a fuzzy closure operator. Let J be any fuzzy closure operator and set
CJ={fe F(S) | J(f)=f} (3.2)

then C J is a closure system. Moreover, if J is a closure operator and C a closure

system, then
Je.=J and C; =C. 3.3
CJ Je (3:3)

4. Extending classical closure operators.
Given a classical operator J:P(S)-%P(S) we extend it in a fuzzy operator
J*:F(S)—F(S) by setting, for every s e F(S)
J*(s)(x)=Sup{reU | xe J(C(s,2))} (4.1)
We call canonical extension of J the operator J*. From Lemma 2.1 it follows that

O(J*(s).n) =AL>JuJ(C(Sv\)) c J(C(s.m)) QAQ#J(C(S,A)) =C(I¥(s)m).  (42)



Proposition 4.1 Let J be a classical operator, then J* is an extension of J.
Moreover, J* is a closure operator if and only if J is a closure operator. In this case
the closed cuts of J* are fixed points for J.

We may extend any class C of classical subsets of S in a class C* of fuzzy subsets
of S by setting

C*={seF(S) | C(s,\) € € for every Ae U, A #0}. (4.3)

Proposition 4.2 C coincides with the class of crisp elements of C*. Moreover, C* is

a fuzzy closure system if and only if C is a closure system.

We call C* the canonical eztension of C and we may also identify C* with the

class of the continuous chains of elements of C.

Proposition 4.3 Let C be a classical closure system and Je the classical closure
operator generated by C. Then

Jex=(Je)* (4.4)

5. Extending algebraic closure operators.

Recall that a classical closure operator J:P(S)—%®(S) J is called algebraic if, for
every subset X of 5, J(X)=U{X; | X; is a finite part of X}. A closure system C of
subsets of S is called algebraic if the union of every chain of elements of C belongs to
C. It is immediate to prove that, for every closure system C,

Je is algebraic <> Cis algebraic
and that, for every closure operator J
J is algebraic & C j is algebraic.

In this section we will examine the canonical extension J* of an algebraic

operator J. In the sequel we will write X+ ; x to denote that xeJ(X) and, if

X={xq,--»xn}, we will write xy,....xp - ; x instead of {xy,....xn} I ; x.

Proposition 5.1 Let J:P(S)—-%P(S) be algebraic then

1 ifxeJ(0)

Sup{v(xy)A...AV(xq) | Xq,...;xpF yx }  otherwise.

J*(v)(x)={ (5.)



6. Examples of canonical extensions.
In this section we will expose some examples of canonical extensions. To simplify
our notations, in the sequel we assume that € is a classical closure system and that

J=Je the related closure operator. Notice that the proofs since are all rather

immediate consequence of Proposition 5.1.

The natural fuzzy topologies. Famous examples of non algebraic classical closure
systems are furnished by the class C of the closed subsets the topological spaces.
Namely, if (S,7) is a topological space, 7 C P(S), we denote by C the class of closed
subsets and, for every subset X of S, by J(X) the set of points adherent to X. It is
immediate to see that the canonical extension C* of C coincides with the class of the
upper semicontinuous fuzzy subsets. Now, the class 7*={s | —seC*} is a fuzzy
topology that was examined in Conrad [1980] under the name of natural fuzzy
topology. So, we can interpret C* as the class of closed subsets of a fuzzy topology.
As a consequence, since Jo+=J", while J(X) is the topological closure in 7 of a subset

X, J*(v) is the topological closure in 7* of a fuzzy subset v.

Proposition 6.1 For every fuzzy subset v, the topological closure of v is given by
J*(v)(x)=Sup{Inf Nv(xn) | (xn), .\ is 2 sequence s.t. x=lim xp}. (6.1)

The natural fuzzy topologies enable us to to show that in (4.2) we cannot set the
equality in the place of the inclusion, in general. Indeed, assume that S=[0,1],
consider the usual topology in S and let v:5—S be the fuzzy subset defined by setting
v(x)=x if x #£1 and v(x)=0 if x=1. Since J(C(v,1))=J([A,1))=[),1] for every A # 1, we
have that

J*(v)(x)=Sup{re U | xe J(C(v,A))}=Sup{re U | A< u}=x,
and therefore that J*(v) is the identity map. Then, while J(C(v,1))=J(8)=0, we have
C(J*(v),1)={1} and while J(O(v,0))=J(S)=S it is O(J*(v),0)=(0,1]. Thus
C(J*(v),A) #J(C(v,2)) and O(J*(v),A) # J(O(v,))).

Convex fuzzy subsets. Assume that C is the class of convex subsets of a
Euclidean space E and therefore that, for every subset X of E, J(X) is the convex
envelope of X. Then, C* is the class of conver fuzzy subsets as defined in Zadeh

[1965] and J*(v) is the convex envelope of v.

Proposition 6.2 For every fuzzy subset v of an Euclidean space, the convex

envelope of v is given by
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J*(v)(x)=Sup{v(x1) A AV(Xn) | 2=20X1 + o+ ApXn, Apedp €Uy A+ + ,\n=1k6.2)

If E is the real line, the convex fuzzy subsets are known under the name of convez

fuzzy numbers. Simple calculations enable us to prove that the convex fuzzy

number J*(v) generated by v is given by

J*(v)(z)=Sup{v(x;) av(xy) | x; <2< x2}=(Sup{v(x1) | %1 < z})A(Sup{v(xz) | z< xz}).

The generalized necessities. Assume that C is the class of filters of a Boolean
algebra B and therefore that, for every subset X of B, J(X) is the filter generated by
X. It is well known that C is an algebraic closure system and therefore that J is an
algebraic closure operator. We call fuzzy filters the elements of C* and therefore, for
every fuzzy subset v of formulas, J*(v) is the fuzzy filter generated by v. Obviously,
every filter is a fuzzy filter and, in particular, the whole algebra B (that is the map
constantly equal to 1) is a fuzzy filter. Now, recall that a generalized necessity is any
map n:B—U such that

n(l)=1 ; n(xAy)=n(x)An(y).
for every x,y € B (see Biacino and Gerla [1992]). The name "generalized necessity” is
justified by the fact that the generalized necessities n for which n(0)=0 are known in

literature under the name of necessities (see Dubois and Prade [1988]).
Proposition 6.3 The fuzzy filters coincide with the generalized necessities.

Proposition 6.4 For every fuzzy subset v the fuzzy filter J*(v) generated by v is
given by

(6.3)

J*(v)(x)z{fup{v(xl)/\...Av(xm) | X Ao AXpp <X} lflfzzziél

Let (ni)i el be a nonempty family of necessities, then, since N, is a generalized
necessity and (n;)(0)=Inf{n;(0) | ieI}=0, Nn, is a necessity. As a consequence, if
N is obtained by adding to the set of the necessities the inconsistent necessity that is
the map constantly equal to 1, then N is a closure system. Given a fuzzy subset v,
we denote by ¥ the necessity generated by v. We say that v is inconsistent if v is the
inconsistent necessity and this is equivalent to say that a necessity exists containing
v. If v is consistent then (6.3) gives the necessity generated by v. Indeed, if n is a
necessity containing v, then since

Y1~ AYMm=0 = v(y) A... A¥(ym) <0(yy) A.oo An(ym)=n(y; A ... AYm)=0(0)=0,
we have J*(v)(0)=0 and therefore that J*(v)=v.  H



7. The case of the fuzzy subalgebras.

In the sequel A=(A,H,C) denotes an algebraic structure, where A is the domain,
H is the set of operations on A and C C A is the set of constants. Assume that € is
the class of subalgebras of A, where, if there is no constant the empty subset is
considered as a subalgebra, then C is an algebraic closure system and, for every
subset X of A, J(X) is the subalgebra of A generated by X. In accordance with the
literature, we write <X> instead of J(X). Then, the elements of C* are the fuzzy
subsets whose closed cuts are subalgebras of A and are well known in literature
under the name of fuzzy subalgebras (Rosenfeld [1971] and Di Nola and Gerla [1987]).
Moreover, J*(v) is the fuzzy subalgebra generated by v and we denote it by <v>.

Proposition 7.1 Denote by Pol(A) the set of polynomial function of A, then, for

every fuzzy subset v, the fuzzy subalgebra generated by v is given by

Sup{v(x;) A...Av(xp) | p(%Xq,....xn)=2 , pePol(A)} if xg<C> 71
1 if xe <C>. (

<v>(x)={

Formula (7.1) becomes very simple if we consider classes of algebraic structures in
which the polynomial function can be reduced to a canonical form. As an example, if

A is a semigroup then the fuzzy subsemigroup <v> generated by v is obtained by
Sup{v(x;) A... A¥(xp) | x{..xp=z2} if z#1
<v>(z)= .
1 if z=1
If A is a group then the fuzzy subsemigroup <v> generated by v is given by

Sup{v(x;)A... Av(xp) | xlll-...-xninzz yi1,eein € {1,-1}} if z#1
<v>(2)= 1 if z=1

(see Biacino and Gerla [1984]). We conclude by noticing that further examples of
fuzzy closure operators shoud be obtained by the free, pure, very pure, left unitary,

right unitary, unitary fuzzy subsemigroups of a free semigroup A (see Gerla [1985])
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