On Convex Fuzzy Sets

Xinmin Yang
Department of Mathematics, Chongqing Teacher's College
Chongqing, 630047, People's Republic of China

Abstract

This paper gives some properties of convex fuzzy sets, strictly convex fuzzy sets and strongly convex fuzzy sets.

1. Introduction

Convex fuzzy sets were first defined by Zadeh in [1]. Some properties were subsequently studies by Brown in [2], Weiss in [3], Katsaras and liu in [4], Lowen in [5], Liu in [6] and Yang in [7]. In this paper some properities of convex fuzzy sets, strictly convex fuzzy sets and strongly convex fuzzy sets are studied.

2. Notations

Throughout this paper E will denote the n-dimensional Euclidena space R^n . Fuzzy sets and values will be denoted by lower case Greek letters and we shall make no difference between notations for a fuzzy set with a constant value and that value itself. I=(0,1)

The fuzzy set λ on E is said to be convex fuzzy set if λ (ax + (1-a) x) $\gg \lambda$ (x) $\wedge \lambda$ (y)

for every $\mathbf{x} \in \mathbf{E}$, $\mathbf{y} \in \mathbf{E}$ and $\mathbf{a} \in \mathbf{I}$.

The fuzzy set λ is said to be strongly convex fuzzy set if λ (ax+(1-a) y) > λ (x) \wedge λ (y)

for every $\mathbf{x} \in \mathbf{E}$, $\mathbf{y} \in \mathbf{E}$, $\mathbf{x} \neq \mathbf{y}$ and $\mathbf{a} \in \mathbf{I}$.

The fuzzy set λ is said to be strictly convex fuzzy if λ (ax+(1-a) y) > λ (x) \wedge λ (y)

for every $\mathbf{x} \in \mathbf{E}$, $\mathbf{y} \in \mathbf{E}$, λ $(\mathbf{x}) \neq \lambda$ (\mathbf{y}) and $\mathbf{a} \in \mathbf{I}$.

the fuzzy set λ on E is said to be a fuzzy closed set iff for all $a\in I$, $\lambda^{-1}\left[a,1\right]$ is closed .

3 Main Ressults

Theorem 1. let λ be a strictly fuzzy set on E , if there exists $a\in I$, for every x, y $\in E$ such that

```
\lambda (ax+(1-a)y) > \lambda (x) \wedge \lambda (y)
                                                                                   (A)
Then \lambda is convex fuzzy set on E.
     Proof . By contradiction , suppose that there exists x , y \in E
and b \in I such that
             \lambda (bx+(1-b)y) < \lambda (x) \wedge \lambda (y)
Without loss of generality, assume that \lambda (x) \leq \lambda (y)
                                                                              and
                  z = bx + (1 - b)y
                  \lambda (z) < \lambda (x) \wedge \lambda (y).
                                                                                     (1)
If \lambda (x) < \lambda (y), since \lambda is strictly convex fuzzy set, we have
                       \lambda (z) > \lambda (x) \wedge \lambda (y).
contradicting (1).
If \lambda (x) = \lambda (y), then (1) implies that
           \lambda (z) < \lambda (x) = \lambda (y)
                                                                                      (2)
      (1) If 0 < b < a, let z_1 = (b/a) x + (1-b/a) y.
Thus,
            z=bx+(1-b)y=a[(b/a)x+(1-b/a)y]+(1-a)y=az_1+(1-a)y.
According to (A), we have
             \lambda (z) > \lambda (z<sub>1</sub>) \wedge \lambda (y).
Since (2) and inequality above, then
             \lambda (z) > \lambda (z<sub>1</sub>)
                                                                                     (3)
        c = [(1-a)/a][b/(1-b)], because of 0 < b < a < 1, it is easy to
Let
show
                    0 < c < 1.
Thus ,
            z_1 = (b/a) x + (1-b/a) y = (b/a) x + (1-b/a) [z/(1-b) -bx/(1-b)]
             = \mathbf{c} \mathbf{x} + (1 - \mathbf{c}) \mathbf{z} .
Since \lambda is strictly convex fuzzy set, from the inequality (2) and
equality above, we obtain
             \lambda (z_1) > \lambda (x) \wedge \lambda (z) = \lambda (z)
contradicting (3).
      (11) If a < b < 1. That is 0 < (b-a)/(1-a) < 1.
Let z_2 = [(b-a)/(1-a)]x + [(1-b)/(1-a)]y,
thus,
            z=bx+(1-b) y=ax+(1-a) z_2.
According to (A), we have
             \lambda (z) > \lambda (x) \wedge \lambda (z<sub>2</sub>),
Again Since (2) and the inequality above imply
                     \lambda (z) > \lambda (z<sub>2</sub>).
                                                                                      (4)
Let
            d = (b-a) / [(1-a) b].
Since 0 < a < b < 1, it is easy to show 0 < d < 1.
Thus,
            z_2 = [1/(1-a)]z - [a/(1-a)]x
```

 $= [1/(1-a)] z-[a/(1-a)] [\{1/b\} z-\{(1-b)/b\} y]$

= dz + (1 - d) y.

```
Since \lambda is strictly convex fuzzy set, from the inequality (2) and
equality above, we obtain
                \lambda (z<sub>2</sub>) > \lambda (z) \wedge \lambda (y) = \lambda (z)
contradicting (4)
       Theorem \overline{\mathbf{2}}. Let \lambda be a convex fuzzy set on \mathbf{E} . if there exists
a \in I , for every x , y \in E , \lambda (x) 
eq \lambda (y) implies
                       \lambda (ax+(1-a) y) > \lambda (x) \wedge \lambda (y).
                                                                                                     (B)
Then \lambda is strictly convex fuzzy set on E.
   Proof. By contradiction, suppose that there exist x, y \in E, b \in I
such that \lambda (x) \neq \lambda (y) and
               \lambda (bx+(1-b)y) < \lambda (x) \wedge \lambda (y).
                                                                                                  (5)
Without loss of generality, suppose that \lambda (x) > \lambda (y).
Let z = bx + (1-b)y, then (5) implies
               \lambda (z) \leq \lambda (x) \wedge \lambda (y) < \lambda (x).
                                                                                                   (6)
Since \lambda be convex fuzzy set, we have
               \lambda (z) > \lambda (x) \wedge \lambda (y)
                                                                                                   (7)
which together with (5), we obtain
               \lambda (x) > \lambda (z) = \lambda (x) \wedge \lambda (y)
                                                                                                   (8)
According to (B) , \lambda (z) < \lambda (x) implies that
               \lambda (ax+(1-a)z) > \lambda (x) \wedge \lambda (z) = \lambda (z),
               \lambda (a^2x+(1-a^2)z) = f[a(ax+(1-a)z)+(1-a)z]
                > \lambda [ax+(1-a)z] \wedge \lambda (z)
                > \lambda (\mathbf{x}) \wedge \lambda (\mathbf{z}) = \lambda (\mathbf{z}),
                *** *** *** *** ***
               \lambda [\mathbf{a^k x} + (1 - \mathbf{a^k}) z] > \lambda (\mathbf{x}) \wedge \lambda (\mathbf{z}) = \lambda (\mathbf{z}), k \in \mathbb{N}.
                                                                                                   (9)
From
              z=bx+(1-b)y, we have
              a^{k}x+(1-a^{k})z=a^{k}x+(1-a^{k})(bx+(1-b)y)
                                = (b-a^{k}b+a^{k}) x+ (1-b-a^{k}+a^{k}b) y
Let \bar{k} \in N such that
              a^{K+1} / (1-a) < b/ (1-b)
Let e_1 = b - a^{\overline{k}}b + a^{\overline{k}}, e_2 = b - a^{\overline{k}+1}/(1-a) + a^{\overline{k}+1} b/(1-a),
         x^1 = e_1 x + (1 - e_1) y, y^1 = e_2 x + (1 - e_2) y.
Thus,
              a^{\mathbf{x}}x + (1-a^{\mathbf{x}}) z = e_1 x + (1-e_1) y = x^1
                                                                                                (10)
According to (9) and (10), we obtain
     \lambda (x^{1}) = \lambda (e_{1}x + (1 - e_{1})y) = (a^{x}x + (1 - a^{x})z) > \lambda (z)
                                                                                         (11)
      (I) If \lambda (x<sup>1</sup>) \leq \lambda (y<sup>1</sup>), according to z=bx+(1-b) y=ax^1+(1-a) y<sup>1</sup>
and \lambda is convex fuzzy set, this implies that
             \lambda (z) > \lambda (x<sup>1</sup>) \wedge \lambda (y<sup>1</sup>) = \lambda (x<sup>1</sup>)
which contradicts (11).
      (II) If \lambda (x^1) > \lambda (y^1), according to z=ax^1+(1-a)y^1 and (B),
\lambda (x<sup>1</sup>) > \lambda (y<sup>1</sup>) implies that
```

 λ (z) $> \lambda$ (x¹) $\wedge \lambda$ (y¹)

(12)

Again since $x^1 = e_1 x + (1 - e_1) y$, $y^1 = e_2 x + (1 - e_2) y$ and λ is convex fuzzy set, we have

$$\lambda (\mathbf{x}^1) > \lambda (\mathbf{x}) \wedge \lambda (\mathbf{y}) . \tag{13}$$

$$\lambda (\mathbf{y}^{\perp}) > \lambda (\mathbf{x}) \wedge \lambda (\mathbf{y}) . \tag{14}$$

According to (12), (13), and (14), we obtain

$$\lambda (z) > \lambda (x^{1}) \wedge \lambda (y^{1})$$

$$> [\lambda (x) \wedge \lambda (y)] \wedge [\lambda (x) \wedge \lambda (y)]$$

$$= \lambda (x) \wedge \lambda (y)$$

which contradicts (8).

According to theorem 2 in [7] and theorem 2 above, we have the following corollary.

Corollary 3. Let λ be a fuzzy closed set on E , if there exists $a\in I$, for every $x,y\in E$, λ $(x)\not=\lambda$ (y) implies

$$\lambda (ax+(1-a)y) > \lambda (x) \wedge \lambda (y)$$
.

Then λ is a strictly convex fuzzy set on E . the converse is not true. But , we have the following result.

Theorem 4. Let λ be a convex fuzzy set on E , if there exists $a\in I$ such that for every pair of distinct points $x\in E$, $y\in E$ there holds

$$\lambda (\mathbf{a}\mathbf{x} + (\mathbf{1} - \mathbf{a}) \mathbf{y}) > \lambda (\mathbf{x}) \wedge \lambda (\mathbf{y}). \tag{C}$$

Then λ is a strongly convex fuzzy set on E.

$$\lambda (bx+(1-b)y) < \lambda (x) \wedge \lambda (y)$$

Let z=bx+(1-b)y, above inequality implies

$$\lambda (z) \le \lambda (x) \wedge \lambda (y) . \tag{15}$$

Since λ is convex fuzzy set, we have

$$\lambda (z) > \lambda (x) \wedge \lambda (y) . \tag{16}$$

(15) and (16) imply

$$\lambda (z) = \lambda (x) \wedge \lambda (y) . \tag{17}$$

Choose β_1 , β_2 , satisfy $0 < \beta_1 < b < \beta_2 < 1$ such that

$$b=a \beta_1 + (1-a) \beta_2$$
 (18)

Let $x^1 = \beta_1 x + (1 - \beta_1) y$, $y^1 = \beta_2 x + (1 - \beta_2) y$.

Thus .

$$ax^{1} + (1-a)y^{1} = bx + (1-b)y = z$$
 (19)

Again since λ is convex fuzzy set, this implies

$$\lambda (\mathbf{x}^1) > \lambda (\mathbf{x}) \wedge \lambda (\mathbf{y}) \tag{20}$$

$$\lambda_{-}(\mathbf{y}^{\perp}) > \lambda_{-}(\mathbf{x}) \wedge \lambda_{-}(\mathbf{y}) \tag{21}$$

According to (C), (19), (20), and (21), we have

$$\lambda (z) > \lambda (x^{1}) \wedge \lambda (y^{1})$$

$$> [\lambda (x) \wedge \lambda (y)] \wedge [\lambda (x) \wedge \lambda (y)]$$

$$=\lambda (x) \wedge \lambda (y)$$

which contradicts (17).

According to corollary 1 in [7] and theorem 4 above, we have the following corollary.

Corollary 5. Let λ be a fuzzy closed set on E , if there exists a $\in I$, such that for every pair of distinct points $x \in E$, $y \in E$, implies that

$$\lambda (ax+(1-a)y) > \lambda (x) \wedge \lambda (y)$$
.

Then λ be a strongly convex fuzzy set on E.

Theorem 6. Let λ be a strictly convex fuzzy set on E , if there exists $a\in I$, such that for every pair of distinct points $x\in E$, $y\in E$, implies that

$$\lambda (ax + (1-a) y) > \lambda (x) \wedge \lambda (y)$$
 (D)

Then λ be a strongly convex fuzzy set on E.

Proof Since λ be a strictly convex fuzzy set, we only show λ (x) = λ (y), $x \neq y$, implies that

$$\lambda (bx+(1-b)y) > \lambda (x) \wedge \lambda (y)$$
, $\forall b \in I$

Indeed, since (D), for each $x, y \in E$, $x \neq y$, we have

$$\lambda$$
 (ax+(1-a) y) > λ (x) \wedge λ (y) = λ (x) = λ (y)

let x=ax+(1-a)y. For each $b \in I$.

If b < a, we have

bx+(1-b)y=cx+(1-c)x, for some $c \in I$.

Since λ is strictly convex fuzzy set on E , so

$$\lambda (bx+(1-b) y) = \lambda (cx+(1-c) x)$$

$$> \lambda (x) \wedge \lambda (x) = \lambda (x).$$

If b>a, we have

bx+(1-b)y=dx+(1-d)y, for some $d \in I$.

Since λ is strictly convex fuzzy set on E , hence

$$\lambda (bx + (1-b) y) = \lambda (dx + (1-d) y)$$

$$> \lambda (x) \wedge \lambda (y) = \lambda (y).$$

This complete proof of theorem 6.

REFERENCE

- [1] L. A. Zaden, Fuzzy sets, Information and Control, 8 (1965), 338-353.
- [2] J. G. Brown, A note on fuzzy sets, Information and Control 18 (1971) 32-39.
- [3] M. D. Weiss, Fixed points, separtion and induced topologies for fuzzy sets, J. Math. Anal. Appl. 50 (1975), 142-150.
- [4] A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977), 135-146.
- [5] R. Lowen, Convex fuzzy sets, Fuzzy Sets and Systems, 3 (1980), 291-310.

- [6] Y. M. Liu, Some properties of convex fuzzy sets, J. Math. Anal. Appl. 111 (1985), 119-129.
- [7] X.M. Yang, A note on convex fuzzy sets, Fuzzy Sets and Systems 53 (1993), 117-118.
- [8] X.M. Yang, Relationship among three types of convex fuzzy sets. BUSEFAL 35 (1988), 53-59.