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Abstract
This paper gives some properties of convex fuzzy sets,
gstrictly convex fuzzy sets and strongly convex fuzzy sets

1. Introduction
Convex fuzzy sets were first defined by Zadeh in [1] . Some
properties were subsequently studies by Brown in [2] , Weiss in
[3] ,Katsaras and liu in [4] ,Lowen in [6] , Liu in [6] and Yang
in [7] . In this paper some properities of convex fuzzy sets ,
strictly convex fuzzy sets and strongly convex fuzzy sets are
studied .

2. Notations

Throughout this paper E will denote the n-dimensional Euclidena
space R® Fuzzy sets and values will be denoted by lower case Greek
letters and we shall make no difference between notations for a
fuzzy set with a constant value and that value itself . I=(0, 1)

The fuzzy set » on E is said to be convex fuzzy set if

Afax t(1-a)x ) 2 A (DDA A ()
for every x€ E, yc E and a€ I .
The fuzzy set A is said to be strongly convex fuzzy set if
Aaxt (1-a) ) > A (DA M (9
for every x¢ E, yC€ E, x=y and ac€ [ .
The fuzzy set » is said to be strictly convex fuzzy if
Alaxt(1-a)y) > A (X} A A (y)
for every xCE ,y€E, » (x)5= A (y) and ac I .

the fuzzy set » on E is said to be a fuzzy closed set iff for

all a€ I, *»"'{a 1] is closed .

3 .Main Ressults

Theorem 1. let » be a strictly fuzzy set on E , if there
exists a€ [ , for every x,y¢ E  such that '



A(axt(l-a)p) > A (DA A (7). (A)
Then *» is convex fuzzy set on E.
Proof . By contradiction , suppose that there exists x ,yc E
and b€ I such that :
A(bxt (1-Dky) < A (x} A M (7).
Without loss of generality , assume that *» (x) < A (y) and
let z=bxt (1-b} y.
Alzy <A (A A (). ' (1)
If X% (x) <A (y), sinee A is strictly convex fuzzy set , we have
Ay >A (DA A (D,
contradicting (1).
If »(x}=A(y) , then (1) implies that
A{z)<d (x)=2 (9) (2)
(1) If 0<b<a, let z,=(b/a)x+(1-b/a}y.
Thus |,
z=bx+ (1-b) y=a [ (b/a) x+ (1-b/a) y] + (1-a) y=az,+ (1-a) y.
According to (A) , we have
Az 2 A () A MLy,
Since (2) and inequality above , then
A(z) > A (zy) ' (3)
Let c¢=[(1-a)/al [b/(1-b)], because of 0<b<a<l,it is easy to
show 0<c<l,
Thus ,
2= (b/a) x+ (1-b/a) y= (b/a) x+ (1-b/a) [z/ (1-b} -bx/ (1-b) ]
=cxt(1-¢)z .
Since » is strictly convex fuzzy set , from the ipequality (2) and
equality above, we obtain
Az > A (@AM =2 (2)
contradicting (3).
(11) If a<b<1 . That is 0< (b-a)/(1-a) <1.
Let Zs=[(b'a)/(l‘a)]X+[(l'b)/(l'a)]y:
thus ,
z=bxt (1-b) y=ax+ (1-a) z,
According to (A) , we have
A(z) 2 A (A X (za),
Again Since (2) and the inequality above imply

A (z) 2 M (24). (4)
Let d=(b-a) /[(1-a) b].
Since 0<a<b<l, it is easy to show 0<d<],

Thus,
22=[1/(1-a) ] z-[a/ (1-8) ] x
=[1/(1-a)1z-[a/ (1-a) ] [{1/b}z-{(1-D) /b}y]
=dz+ (1-d) 3.



Since *» is strictly convex fuzzy set , from the inequality (2) and
equality abeve, we obtain
Azl > A BA M) =h ()
contradicting (4)
Theorem 2. Let A be a convex fuzzy set on E . if there exists
ac I, for every x,3€E, % (x)£* (y) implies
A (axt (1-a) 3} > A (x) A A (7). (B)
Then » is strictly convex fuzzy set on E.
Proof. By contradiction, suppose that there exist L, y¢E bl
such that 2 (x)s< % (y) and
Abxt(1-D)y) < A (DA X (y), (6)
Without loss of generality , suppose that » (x) > A (y).
Let z =bx+(1-bly , then (6) implies

AMEIK A AL (<A (x), (6)
Since » be convex fuzzy set , we have .

Az 2 A (A M (P 7
which together with (5), we obtain

A >A @ =2 (DA My (8)

According to (B) , X (z) <A (x) implies that
Alaxt(1-a)z) > A (DA M (2) =2 (2),
A (8%x4 (1-2%) z) =f [a (ax+ (1-8) z) + (1-8) z]
> A [axt (1-8) 2] A A (2)
> A (x)/\ A(z)=A (z),
A [a xt(1-a%)z] > A (A M (2 =X (z), kEN (9)
From z=bxt (1-b) y, we have
a®xt (1-a*) z=a*x+ (1-2*) (bx+ (1-b) y)
= (b-a*b+a™) x+ (1-b-a*+a*b} y
Let k¢ N such that
a¥*1 /(1-a) <b/(1-b),
Let e =b-a*b+a® , eg=b-a®*/(1-a) +a® T b/ (1-a) ,
x'=e;xt(l-e,)y, y'=eaxt(l-ea)y.
Thus ,
a¥x+ (1-a%) z=e,x+ (1-e, ) y=x' , {(10)
According to (9) and (10), we obtain
ALxth =2 (eixt (1-e,) y) = (a%xt (1-2%) z) > A () (11)
(I} If A ()< A (y'), according to  z=bx+(1-b) y=ax'+(1-a) y*
and » is convex fuzzy set , this implies that
AMzd > A (xDY A A (34 = A (xY)
which contradicts (11)
I[) If » (x*)>X(y') , according to z=ax'+(l-a)y* and (B),
A (x') > A (y") implies that
Az > A (xM A A (3Y) (12}



Again since x'=e,xt(l-e,)y, ¥y'=eqxt(l-esly and » is convex fuzzy set ,
we have
M2 A A MG . (13)
A2 A AL (Y . (14)
According to (12), (13),and (14) , we obtain
Azy>h Y)Y A M (3Y)
I @DAMPIATY DA M (Y]
= A (D) A Ay
which contradicts (8).

According to theorem 2 in [7] and theorem 2 above , we have

the following corollary.
Corollary 3. Let » be a fuzzy closed set on E, if there exists
ac [ ,for every x, y€E E, A (x)=2* (y} implies '
A (axt (1-a) y) > A (x} A A (y).
Then » is a strictly convex fuzzy set on E . the converse is not
true. But , we have the following result.

Theorem 4. Let » be a convex fuzzy set on E , if there exists
aC I such that for every pair of distinet points x€E, y € E there
holds

A (axt (1-a) 9} > A () A A (y). (C)
Then *» is a strongly convex fuzzy set on E,

Proof . Assume that » is not strongly convex fuzzy set on E. Then )

there exist x, y€ E, x>y, b€ I such that
AMbxt(1-D) I A (VA A (7)
Let z=bxt{1-b}y , above inequality implies

A< A (A M (p) . (15)
Since » is convex fuzzy set , we have
Az > M (DA My . (15)
(16) and (16) imply
A=k (A M) . (a7
Choose B, , B, ,satisfy 0<B,<b< B,<1 such that ,
b=aB,+(1-a) B, (18}
Let x'=B,x+{1-B.})y, y'=B.x+t(1-Ba}y
Thus ,
ax'+(1-a) y'=bx+(1-b) y=z (19)
Again since » is convex fuzzy set, this implies
Aixty2 A (A A (Y (20)

Ayt A A (P (21)
According to (C), (19}, (20), and (21), we have :

Mgy > A A M (3

22 @DAMPIATY (DA M (9)]

=A (A M (Y) ’



which contradicts (17).

According to corollary 1 in [7] and theorem 4 above , we have
the following corollary.

Corollary 6. Let » be a fuzzy closed set on E , if there exists
ac I , such that for every pair of distinet points x€ E ,y€ E ,
implies that

Alaxt (1-a) 9} > A (DA A (9)

Then » be & strongly convex fuzzy set on E .

Theorem 6. Let » be a strictly convex fuzzy set on E , if
there exists ac€ [ , such that for every pair of distinet points x€ E ,
y€ E , implies that

Afaxt (1-a) ) = A (A A (3) D
Then » be a strongly convex fuzzy set on E.
Proof Since » be a strictly convex fuzzy set ,we only show
Mixb=A (y) , x£y, implies that
Abxt(-bp>* FAMGE VvV bel.,
Indeed , since (D) , for each x, y€ E , x>2y, we have
Alaxt{l-a) P > A (DA AM(F =2 (x)=2 (y)
let x=axt(1-a)y .For each b€ I
If b<a ,we have
bx+{1-b) y=ex+ (1-¢}x , for some c¢€ 1,
Since » is strictly convex fuzzy set on E , so
A (bxt(1-b) g} =3 (ext(1-¢}x)
>A(@MA M@ =H ().
[f b>a ,we have
bx+ (1-b) y=dx+(1-d}y , for some d€ I .
Since » is strictly convex fuzzy set on E , hence
A (bx+(1-b) y) =2 (dx+ (1-d} y)
>AMAAMF=A(y.
This complete proof of theorem § .
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