ON MARTINGALES IN GENERAL ORDERED SYSTEMS

BELOSLAV RIECAN

In the contribution the martingale convergence theorem is proved in general
ordered structure including the quantum logics as well as the F-quantum spaces.

1. QUASIORTHOCOMPLEMENTED POSETS

We shall assume that there is given a partially ordered set P with a mapping
a — a' from P to P satisfying the following conditions: a) If @ < b, then b’ < d'.
b) (a') 2 a for every a € P. ¢c) If a; € P (i =1,2,...) and a; £ ajr (i # j), then
there is the supremum Va;. The set P will be calleld quasi-orthocomplemented
o-poset.

Recall that this axiom system was used in [1], too.

Example 1.1. Every quantum logic [2] satisfies the assumptions. A very special
but important case is the logic P of all linear subspaces of a Hilbert space. P is
ordered by inclusion and a' is the orthogonal complement of a.

Example 1.2. Every F-quantum space satisfies the assumptions stated above.
F-quantum space is a set of functions f: X — (0,1) containing 0, closed under
complementation f — 1 — f and countable unions \/ fn = supnf,. The notion of

n

F-quantum space was inspired by Piasecki considerations [3] and it was introduced
in [4] and [5]. Recently J. Pykacz [6] suggested from a physical point of view the
following modification: F is closed under countably unions of pairwise orthogonal
sequences (fn)n (i. €. fn £ 1= fn for n # m). Evidently also this modification
satisfies the above assumptions. (For recent development see [7].) Recall that
every Gudder’s ¢ — o-algebra of sets [8] is such a generalized F-quantum space, if
we identify sets with their characteristic functions.

Definition 1.1. An observable is a o-homomorphism z from the o-algebra B
of Borel subsets of the real line R to P, i.e. such a mapping z: B — P that
a) z(A") = z(A)' for every A € B and b) z(|J4r) = \/ z(An) for every A, € B
(n=1,2,...).

If f is a random variable defined on a probability space (X, S, P), then the
mapping ¢: B — S assigning to every A € B the pre-image f~1(A), is an observ-
able. Also every observable in the quantum logic theory and every F-observable
are observables in the sense of Definition 1.1.

Our results will be based on the following representation theorems ([1], [2]).

Theorem 1.1. If Q is a countably generated sub-o-algebra of P, then there is an
observable y such that Q = y(B).
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Theorem 1.2. Let y, z: B — P be observables such that z(B) C y(B). Then
there exists a Borel measurable function f: R — R such that z=yo f -1,

Definition 1.2. A state is a mapping m: P — (0,1) satisfying the following two
conditions: a) m(aV @') = 1 for every a € P. b) m(Van) = S-m(an) for every
an € P such that a, < !, (n #m).

Proposition 1.1, If z: B — P is an observable and m: P — (0,1) is a state,
then the mapping m,: B — (0,1) defined by m,(4) = m(z(A)) is a probability
measure.

Definition 1.3. An observable z is called integrable, if there exists [t dmg(t).
R

The previous integral will be denoted by J = dm. Our purpose is to define the
indefinite integral [z dm.

CONDITIONAL EXPECTATION

Definition 2.1. Let z,y be observables, z(B) C y(B) = Q,a € Q. Then we define
z.: B — P by the formula z,(U) = y(T~'(h™'))), where h: Ry — R is defined by
h(u,v) = uv and T: R — R, is defined by T(u) = (f(u), 1a(u)), z =yo f! and
a=y(4).

As a motivation we shall consider the classical case, where y is induced by a
random variable g, hencey =g~ L,z =g o f 1=k, k=fog.

Then (k - 1)~ (U) = ((fo ) (1ao ) (U) = ((f-14)09)” (V) =
(hoTo g)‘l(U) =g loT 1o (h'l(U) = y(T'l(h'l(U))).

Of course, we must prove the corectness of Definition 2.1.

Lemma 2.1. Let z, y, z: B — P be observables and f, g: R — R be Borel func-
tions such that ¢ = yof~! = zog™!. Let a € y(B) = z(B) and let a = y(4) = z(C).
Put T: R, —» R, S: Ry » RbyT(u) = (f(x), 1a(u)), S(u) = (9(u), 1c(w)). Then
yoT 'oh l=z081oh™L

Proof. Put first D = h~'(U) and assume that D = E x F', where E, F € B. then

y(TY(R(U)) = y(T7HD)) =y(THE x F) =y(f T (B)o 134(F)) =
=y(FUE) Ay(15'(F)) -
But y(f~(E)) = =(E) = z(¢9""(E)) by the assumption. We prove that also
y(131(F)) = z(1g"(F)). Ife. g. 0¢ F and 1 € F, then 1;1(F)=A,15'(F)=C,
hence y(lz1 (F)) =y(A) =a=2(C) = z(lEI(F)); similarly also all other cases
can be examined. So
y(T7HRTIUY)) = y(FH(B)) Ay(13'(F)) =
= 2(g7}(B)) A z(15"(F)) = 2(S7 (AT (V))) -

Since the family K = {U € By; y(T™1(h7'(U))) = 2(S7'(h7'(V)))} is
o-algebra containing the family {E x F; E € B, F € B}, K D Ba.
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Theorem 2.1. If z is integrable, then z, is integrable, too. Moreover, if we define
fzdm = [z, then [zdm = [ f dmy.
a a A

Proof. By the definition and the integral transformation formula (i is the identity

map)
/idmx= / idmyof"1=/fdmy.
R

R f-1(R)

Therefore f is my-integrable, hence f - 14 is my-integrable, too.

Moreover
/fdmy=/f-lAdmy=]idmyo(f-1A)_1.
A B R
But
yo(f.lA)"l=yo(h(f,1A))_1=yoT_10h_1=xa,
hence

myo(f-lA)_l=moyo(f-1A)"1=m(a:a)=/z dm.

a

Theorem 2.2. Let Qo, Q C P be Boolean sub-o-algebras of P, Qo C Q. Let
2: B — P be an observable such that z(B) C Q. Then there exists an observable
z: B — P such that z(B) C Qo and

/zdm:/xdm

for every a € Qo.

Proof. By Theorem 2.1 there is an my-integrable function f: R — R such that

’A‘/fdmy=a/:cdm

for every a € Q and every A € B such that y(4) = a. Put Sp = {E € B; y(E) €
Qo}. Then Sy is a sub-o-algebra of B. Put g = E(f|So). Then g is So-measurable

and
/fdmy=/g dmy
A A

for every A € Sp. Put z =yog~!. Then 2(B) = z(g~}(B)) C 2(So) = Qo- Futher,
if a € Qq, then A € Sy, hence

/xdm:/fdm_,,:/gdmy.
A A

a



4 BELOSLAV RIECAN

By the integral transformation formula

/gdmy=/idmyog_l=/idmz,
R

R R

since m,(E) = m(2(E)) = m(z(g7(E))) = my (97(E)). Hence z is integrable,
z = y o g~'. Therefore by Theorem 2.1

/zdm=/gdmy.

a A

3. MARTINGALE CONVERGENCE THEOREM

The classical convergence theorem says about the convergence almost every-

where. Therefore we must first define this kind of convergence of observables in the
general case.

Definition 3.1. We say that a sequence (zn) of observables converges to 0 m-
almost everywhere, if

m (A V iy -e00) -0

k=1 n=k
for every € > 0.

Generally () converges to z, if (zn,— ) converges to 0. Of course, it is necessary
to define the difference of observables.
Again we shall follow the classical example. Let z be an observable induced by a
Borel function f, i.e. z = f~, y be induced by g, i. e. y = ¢g~'. Put h: R; - R,
h(u,v) =u—v, T: X — Ry, T(u) = (f(u), g(u)). Then

(f—9) 1= (r(f,9)) " =(hoT) P =T toh™.

Here T~': B, — S is such a o-homomorphism, that T"(E x F) = f~YE) A
¢ Y(F). So we can generalize.

Definition 3.2. Let z,y be observables. We shall say that there exists the differ-
ence z = z — y, if there is a c-homomorphism k: By — P such that k(E x F) =
2(E) A y(F). Then we define z — y(C) = k(h™*(C)), where h: Ry — R is defined
by h(u,v) =u —v.

Definition 3.3. We say that a sequence (z,) of observables converges to an ob-
servable ¢ m-almost everywhere, if x, — there exists for every n (sufficiently large)
and (z, — ) converges to 0 m-a.e.
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Theorem 3.1. If 21,2, are two observables satisfying the conditions stated in
Theorem 2.2, then z; = z; m-a.e., i.e. m((z1 — z2)({0})) = 0.

Proof Let z; = yogy', z2 = yo g;'. Then k = y o (g1, g2)"! satisfies the

condition stated in Definition 3.2, hence z; —22 = ko k™! =y o (g1, g2) toh™l =

-1 _ .
yo (ho(g1, 92)  =yo(g1 —g2)"". Further g = g2 my-a.e., since g1, g2 are
variants of the same conditional expectation E(f|Sy). Therefore

0 = my ({u; g1(v) = g2(v)}) =m(y((91 — 92)7 ({0})) =
= m(z1 ot 22({0})1)) .

Theorem 3.2. Let (Q,) be a sequence of sub-c-algebras of P such that Qn C
Qni1 C Q (n =1,2,...) and Q is countably generated. Let (z») be a sequence
of integrable observables such that z,(B) C Qn (n = 1,2,...). Assume that
E(zp41]Qn) 2 zn for every n and that supf:vn dm < oo. Then there exists an

observable z such that ¢, — x m-a.e.

Proof. Let y be an observable such that @ = y(B). Let f, be Borel measurable
functions such that z, = yo fo!. Finally let S, = {E € B; y(E) € Qa}. Then
(( fn, Sn)) is submartingale with sup f fn dmy < 0o. Therefore there is an inte-
grable random variable f (defined on the probability space (R, B, my)) such that
frn — f my-a.e. Put z =yo f~!. Then 2, - z m-a.e.
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