ON MARTINGALES IN GENERAL ORDERED SYSTEMS

BELOSLAV RIEČAN

In the contribution the martingale convergence theorem is proved in general ordered structure including the quantum logics as well as the F-quantum spaces.

1. QUASIORTHOCOMPLEMENTED POSETS

We shall assume that there is given a partially ordered set P with a mapping $a \mapsto a'$ from P to P satisfying the following conditions: a) If $a \leq b$, then $b' \leq a'$. b) $(a')' \geq a$ for every $a \in P$. c) If $a_i \in P$ (i = 1, 2, ...) and $a_i \leq a_{j'}$ $(i \neq j)$, then there is the supremum $\forall a_i$. The set P will be called quasi-orthocomplemented σ -poset.

Recall that this axiom system was used in [1], too.

Example 1.1. Every quantum logic [2] satisfies the assumptions. A very special but important case is the logic P of all linear subspaces of a Hilbert space. P is ordered by inclusion and a' is the orthogonal complement of a.

Example 1.2. Every F-quantum space satisfies the assumptions stated above. F-quantum space is a set of functions $f: X \to \langle 0, 1 \rangle$ containing 0, closed under complementation $f \mapsto 1 - f$ and countable unions $\bigvee_{n} f_n = \sup_{n} n f_n$. The notion of

F-quantum space was inspired by Piasecki considerations [3] and it was introduced in [4] and [5]. Recently J. Pykacz [6] suggested from a physical point of view the following modification: F is closed under countably unions of pairwise orthogonal sequences $(f_n)_n$ (i. e. $f_n \leq 1 - f_m$ for $n \neq m$). Evidently also this modification satisfies the above assumptions. (For recent development see [7].) Recall that every Gudder's $q - \sigma$ -algebra of sets [8] is such a generalized F-quantum space, if we identify sets with their characteristic functions.

Definition 1.1. An observable is a σ -homomorphism x from the σ -algebra B of Borel subsets of the real line R to P, i.e. such a mapping $x: B \to P$ that a) x(A') = x(A)' for every $A \in B$ and b) $x(\bigcup A_n) = \bigvee x(A_n)$ for every $A_n \in B$ (n = 1, 2, ...).

If f is a random variable defined on a probability space (X, S, P), then the mapping $x: B \to S$ assigning to every $A \in B$ the pre-image $f^{-1}(A)$, is an observable. Also every observable in the quantum logic theory and every F-observable are observables in the sense of Definition 1.1.

Our results will be based on the following representation theorems ([1], [2]).

Theorem 1.1. If Q is a countably generated sub- σ -algebra of P, then there is an observable y such that Q = y(B).

Theorem 1.2. Let $y, z: B \to P$ be observables such that $x(B) \subset y(B)$. Then there exists a Borel measurable function $f: R \to R$ such that $z = y \circ f^{-1}$.

Definition 1.2. A state is a mapping $m: P \to \langle 0, 1 \rangle$ satisfying the following two conditions: a) $m(a \lor a') = 1$ for every $a \in P$. b) $m(\lor a_n) = \sum m(a_n)$ for every $a_n \in P$ such that $a_n \leq a'_m$ $(n \neq m)$.

Proposition 1.1. If $x: B \to P$ is an observable and $m: P \to \langle 0, 1 \rangle$ is a state, then the mapping $m_x: B \to \langle 0, 1 \rangle$ defined by $m_x(A) = m(x(A))$ is a probability measure.

Definition 1.3. An observable x is called integrable, if there exists $\int_{R} t \ dm_x(t)$.

The previous integral will be denoted by $\int x \ dm$. Our purpose is to define the indefinite integral $\int x \ dm$.

CONDITIONAL EXPECTATION

Definition 2.1. Let x, y be observables, $x(B) \subset y(B) = Q, a \in Q$. Then we define $x_a : B \to P$ by the formula $x_a(U) = y(T^{-1}(h^{-1}))$, where $h : R_2 \to R$ is defined by h(u, v) = uv and $T : R \to R_2$ is defined by $T(u) = (f(u), 1_A(u)), x = y \circ f^{-1}$ and a = y(A).

As a motivation we shall consider the classical case, where y is induced by a random variable g, hence $y = g^{-1}$, $x = g^{-1} \circ f^{-1} = k^{-1}$, $k = f \circ g$.

Then
$$(k \cdot 1_a)^{-1}(U) = ((f \circ g) \cdot (1_A \circ g))^{-1}(U) = ((f \cdot 1_A) \circ g)^{-1}(U) = (h \circ T \circ g)^{-1}(U) = g^{-1} \circ T^{-1} \circ (h^{-1}(U) = y(T^{-1}(h^{-1}(U))).$$

Of course, we must prove the corectness of Definition 2.1.

Lemma 2.1. Let $x, y, z : B \to P$ be observables and $f, g : R \to R$ be Borel functions such that $x = y \circ f^{-1} = z \circ g^{-1}$. Let $a \in y(B) = z(B)$ and let a = y(A) = x(C). Put $T : R_2 \to R$, $S : R_2 \to R$ by $T(u) = (f(u), 1_A(u))$, $S(u) = (g(u), 1_C(u))$. Then $y \circ T^{-1} \circ h^{-1} = z \circ S^{-1} \circ h^{-1}$.

Proof. Put first $D = h^{-1}(U)$ and assume that $D = E \times F$, where $E, F \in B$. then

$$\begin{split} y\big(T^{-1}(h^{-1}(U))\big) &= y\big(T^{-1}(D)\big) = y\big(T^{-1}(E\times F) = y(f^{-1}(E)\circ 1_A^{-1}(F)\big) = \\ &= y\big(f^{-1}(E)\big) \wedge y\big(1_A^{-1}(F)\big) \,. \end{split}$$

But $y(f^{-1}(E)) = x(E) = z(g^{-1}(E))$ by the assumption. We prove that also $y(1_A^{-1}(F)) = z(1_C^{-1}(F))$. If e. g. $0 \notin F$ and $1 \in F$, then $1_A^{-1}(F) = A$, $1_C^{-1}(F) = C$, hence $y(1_A^{-1}(F)) = y(A) = a = z(C) = z(1_C^{-1}(F))$; similarly also all other cases can be examined. So

$$\begin{split} y\big(T^{-1}(h^{-1}(U))\big) &= y\big(f^{-1}(E)\big) \wedge y\big(1_A^{-1}(F)\big) = \\ &= z\big(g^{-1}(E)\big) \wedge z\big(1_C^{-1}(F)\big) = z\big(S^{-1}(h^{-1}(U))\big) \,. \end{split}$$

Since the family $K = \{U \in B_2; y(T^{-1}(h^{-1}(U))) = z(S^{-1}(h^{-1}(U)))\}$ is a σ -algebra containing the family $\{E \times F; E \in B, F \in B\}, K \supset B_2$.

Theorem 2.1. If x is integrable, then x_a is integrable, too. Moreover, if we define $\int x dm = \int x_a$, then $\int x dm = \int f dm_y$.

Proof. By the definition and the integral transformation formula (i is the identity map)

$$\int_{R} i \ dm_{x} = \int_{f^{-1}(R)} i \ dm_{y} \circ f^{-1} = \int_{R} f \ dm_{y}.$$

Therefore f is m_y -integrable, hence $f \cdot 1_A$ is m_y -integrable, too.

Moreover

$$\int\limits_A f \ dm_y = \int_R f \cdot 1_A \, dm_y = \int\limits_R i \ dm_y \circ (f \cdot 1_A)^{-1} \, .$$

But

$$y \circ (f \cdot 1_A)^{-1} = y \circ (h(f, 1_A))^{-1} = y \circ T^{-1} \circ h^{-1} = x_a$$

hence

$$m_y \circ (f \cdot 1_A)^{-1} = m \circ y \circ (f \cdot 1_A)^{-1} = m(x_a) = \int_a x \ dm.$$

Theorem 2.2. Let Q_0 , $Q \subset P$ be Boolean sub- σ -algebras of P, $Q_0 \subset Q$. Let $x \colon B \to P$ be an observable such that $x(B) \subset Q$. Then there exists an observable $z \colon B \to P$ such that $z(B) \subset Q_0$ and

$$\int\limits_a z \ dm = \int\limits_a x \ dm$$

for every $a \in Q_0$.

Proof. By Theorem 2.1 there is an m_y -integrable function $f: R \to R$ such that

$$\int\limits_A f\ dm_y = \int\limits_a x\ dm$$

for every $a \in Q$ and every $A \in B$ such that y(A) = a. Put $S_0 = \{E \in B; y(E) \in Q_0\}$. Then S_0 is a sub- σ -algebra of B. Put $g = E(f \mid S_0)$. Then g is S_0 -measurable and

$$\int\limits_A f \, dm_y = \int\limits_A g \, \, dm_y$$

for every $A \in S_0$. Put $z = y \circ g^{-1}$. Then $z(B) = z(g^{-1}(B)) \subset z(S_0) = Q_0$. Futher, if $a \in Q_0$, then $A \in S_0$, hence

$$\int_a x \ dm = \int_A f \ dm_y = \int_A g \ dm_y.$$

By the integral transformation formula

$$\int\limits_R g \ dm_y = \int\limits_R i \ dm_y \circ g^{-1} = \int\limits_R i \ dm_z \,,$$

since $m_z(E) = m(z(E)) = m(x(g^{-1}(E))) = m_y(g^{-1}(E))$. Hence z is integrable, $z = y \circ g^{-1}$. Therefore by Theorem 2.1

$$\int_{a} z \ dm = \int_{A} g \ dm_{y}.$$

3. MARTINGALE CONVERGENCE THEOREM

The classical convergence theorem says about the convergence almost everywhere. Therefore we must first define this kind of convergence of observables in the general case.

Definition 3.1. We say that a sequence (x_n) of observables converges to 0 m-almost everywhere, if

$$m\left(\bigwedge_{k=1}^{\infty}\bigvee_{n=k}^{\infty}x_{n}(R\setminus(-\varepsilon,\,\varepsilon))\right)=0$$

for every $\varepsilon > 0$.

Generally (x_n) converges to x, if (x_n-x) converges to 0. Of course, it is necessary to define the difference of observables.

Again we shall follow the classical example. Let x be an observable induced by a Borel function f, i.e. $x = f^{-1}$, y be induced by g, i. e. $y = g^{-1}$. Put $h: R_2 \to R$, h(u,v) = u - v, $T: X \to R_2$, T(u) = (f(u), g(u)). Then

$$(f-g)^{-1} = (h(f,g))^{-1} = (h \circ T)^{-1} = T^{-1} \circ h^{-1}$$
.

Here $T^{-1}: B_2 \to S$ is such a σ -homomorphism, that $T^{-1}(E \times F) = f^{-1}(E) \wedge g^{-1}(F)$. So we can generalize.

Definition 3.2. Let x, y be observables. We shall say that there exists the difference z = x - y, if there is a σ -homomorphism $k \colon B_2 \to P$ such that $k(E \times F) = x(E) \wedge y(F)$. Then we define $x - y(C) = k(h^{-1}(C))$, where $h \colon R_2 \to R$ is defined by h(u, v) = u - v.

Definition 3.3. We say that a sequence (x_n) of observables converges to an observable x m-almost everywhere, if $x_n - x$ there exists for every n (sufficiently large) and $(x_n - x)$ converges to 0 m-a.e.

Theorem 3.1. If z_1, z_2 are two observables satisfying the conditions stated in Theorem 2.2, then $z_1 = z_2$ m-a.e., i.e. $m((z_1 - z_2)(\{0\})) = 0$.

Proof. Let $z_1 = y \circ g_1^{-1}$, $z_2 = y \circ g_2^{-1}$. Then $k = y \circ (g_1, g_2)^{-1}$ satisfies the condition stated in Definition 3.2, hence $z_1 - z_2 = k \circ h^{-1} = y \circ (g_1, g_2)^{-1} \circ h^{-1} = y \circ (h \circ (g_1, g_2))^{-1} = y \circ (g_1 - g_2)^{-1}$. Further $g_1 = g_2 \ m_y$ -a.e., since g_1, g_2 are variants of the same conditional expectation $E(f \mid S_0)$. Therefore

$$0 = m_y(\{u; g_1(u) = g_2(u)\}) = m(y((g_1 - g_2)^{-1}(\{0\}')) = m(z_1 - z_2(\{0\})')).$$

Theorem 3.2. Let (Q_n) be a sequence of sub- σ -algebras of P such that $Q_n \subset Q_{n+1} \subset Q$ $(n=1,2,\ldots)$ and Q is countably generated. Let (x_n) be a sequence of integrable observables such that $x_n(B) \subset Q_n$ $(n=1,2,\ldots)$. Assume that $E(x_{n+1} | Q_n) \geq x_n$ for every n and that $\sup_n \int x_n \, dm < \infty$. Then there exists an observable x such that $x_n \to x$ m-a.e.

Proof. Let y be an observable such that Q = y(B). Let f_n be Borel measurable functions such that $x_n = y \circ f_n^{-1}$. Finally let $S_n = \{E \in B; y(E) \in Q_n\}$. Then $((f_n, S_n))$ is submartingale with $\sup \int f_n dm_y \leq \infty$. Therefore there is an integrable random variable f (defined on the probability space (R, B, m_y)) such that $f_n \to f m_y$ -a.e. Put $x = y \circ f^{-1}$. Then $x_n \to x$ m-a.e.

REFERENCES

- Kôpka, F. Riečan, B., On representation of observables by Borel measurable functions., In: Proc. of the First Winter School on Measure Theory (Liptovský Ján, January 10 - 15, 1988), 68-71.
- 2. Varadarajan, V. S., Geometry of quantum theory, Van Nostrand, New York (1968).
- 3. Piasecki, K., On the extension of fuzzy P-measure generated by outer measure., In: Proc. 2nd Napoli Meeting on the Mathematics of Fuzzy Systems (1985), 119-135.
- 4. Riečan, B., A new approach to some notions of statistical quantum mechanics, Busefal 35 (1988), 4-6.
- 5. Riečan, B. Dvurečenskij, J., On randomness and fuzziness. In. Progress in Fuzzy Sets in Europe, (Warszaw, 1986), PAN, Warszawa (1988), 321-327.
- 6. Pykacz, J., Quantum logics and soft fuzzy probability spac, Busefal 32 (1987).
- 7. Dvurečenskij, A. Chovanec, F., Fuzzy quantum spaces and compatibility., Int. J. Theor. Phys. 27 (1988), 1069–1082.
- 8. Gudder, S.P., Generalized measure theory., Foundations of Physics 3 (1973), 399-411.

TECHNICAL UNIVERSITY, JABLOŇOVÁ 518/1, 031 01 LIPTOVSKÝ MIKULÁŠ, CZECHO-SLOVAKIA