Carathéodory's Measurability of Fuzzy Events

Radko MESIAR, Slovak Technical University, Radlinského 11, 813 68 Bratislava, Czechoslovakia

Krzysztof PIASECKI, Academy of Economics, Al. Niepodleglosci 146/150 Poznaň, Poland

Abstract. For a given fuzzy measurable space (X,σ) and a fuzzy set function $m:\sigma \to R$ we define the system σ_m of all fuzzy sets measurable in the sense of Carathéodory. We study the properties of σ_m . Under simple general conditions we show that σ_m is a soft fuzzy algebra and m is a fuzzy P-measure on σ_m .

Let X be a nonempty set. The symbol $\mathcal{F}(X)$ denotes the family of all fuzzy subsets of X, i.e. $\mathcal{F}(X) = [0,1]^{X}$. The operations of the fuzzy union, fuzzy intersection and fuzzy complement are defined in the traditional Zadeh's sense [5],

$$(A \cup B)(x) = \sup (A(x), B(x))$$

$$(A \cap B)(x) = inf(A(x), B(x))$$

$$A'(x) = 1 - A(x)$$

for any A, $B \in \mathcal{F}(X)$ and $x \in X$.

A family $\sigma \in \mathcal{F}(X)$ of fuzzy subsets of X is called a fuzzy algebra (fuzzy σ -algebra), see [2], iff:

- (A1) $0_{\mathbf{X}} \in \sigma$ (we put $c_{\mathbf{X}}(x) = c$ for any $x \in \mathbf{X}$, $c \in [0,1]$)
- (A2) $A \in \sigma$ implies $A' \in \sigma$
- (A3) A, B \in σ implies A \cup B \in σ ({A} \in implies $\bigcup_{n \in \mathbb{N}} A \in \sigma$ in the case of a fuzzy σ -algebra).

Let **m** be a function defined on the fuzzy sets from σ , $\mathbf{m}: \sigma \longrightarrow \mathbb{R}$, where \mathbf{R} is the set of all real numbers. We will distinguish a family $\sigma_{\mathbf{m}} \subset \sigma$ of fuzzy sets measurable in the Carathéodory's sense following the classical concept introduced in [1],

$$\sigma_{\mathbf{m}} = \left\{ A \in \sigma; \forall B \in \sigma: \mathbf{m}(B) = \mathbf{m}(B \cap A) + \mathbf{m}(B \cap A') \right\}$$

For the above defined system σ_{m} we have the following results.

Proposition 1.

- i) $\sigma_{\mathbf{m}}$ is closed under complementation, i.e. $\mathbf{A} \in \sigma_{\mathbf{m}} \Longrightarrow \mathbf{A}' \in \sigma_{\mathbf{m}}$
- ii) $\sigma_{\mathbf{m}}$ is nonempty iff $\mathbf{m}(O_{\mathbf{X}}) = 0$ iff $\{O_{\mathbf{X}}; 1_{\mathbf{X}}\} \in \sigma_{\mathbf{m}}$
- iii) $A \in \sigma_{\mathbf{m}} \implies \mathbf{m}(A \cap A') = 0$ and $\mathbf{m}(A \cup A') = \mathbf{m}(A) + \mathbf{m}(A') = \mathbf{m}(1_{\mathbf{v}})$
- iv) Let $(1/2)_{\mathbf{X}} \in \sigma$; then $(1/2)_{\mathbf{X}} \in \sigma_{\mathbf{m}}$ iff $\mathbf{m}(A) = 0$ for all $A \in \sigma$.
- i) is obvious because of A'' = A.
- ii) Let $\sigma_{\mathbf{m}} \neq \emptyset$. Then there is an element $A \in \sigma_{\mathbf{m}}$ and hence $\mathbf{m}(0_{\mathbf{X}}) = \mathbf{m}(0_{\mathbf{X}} \cap A) + \mathbf{m}(0_{\mathbf{X}} \cap A') = 2\mathbf{m}(0_{\mathbf{X}})$ and consequently $\mathbf{m}(0_{\mathbf{X}}) = 0$. Now, let $\mathbf{m}(0_{\mathbf{X}}) = 0$. For any $A \in \sigma$ it is $\mathbf{m}(A) = \mathbf{m}(A \cap 0_{\mathbf{X}}) + \mathbf{m}(A \cap 1_{\mathbf{X}})$ and hence both $0_{\mathbf{X}}$ and $1_{\mathbf{X}}$ are contained in $\sigma_{\mathbf{m}}$. The last implication, namely that $\{0_{\mathbf{X}}; 1_{\mathbf{X}}\} \subset \sigma_{\mathbf{m}}$ implies that $\sigma_{\mathbf{m}}$ is nonempty, is obvious. iii) Let $A \in \sigma_{\mathbf{m}}$. Then
- $m(A \cap A') = m(A \cap A' \cap A) + m(A \cap A' \cap A') = 2m(A \cap A') = 0$. Further $m(A \cup A') = m((A \cup A') \cap A) = m((A \cup A') \cap A') = m(A) + m(A') = m(1_X \cap A) + m(1_X \cap A') = m(1_X)$.
- iv) Let $(1/2)_{\mathbf{X}} \in \sigma_{\mathbf{m}}$. Then $(1/2)_{\mathbf{X}} = (1/2)_{\mathbf{X}}$ and for any $A \in \sigma$ it is $\mathbf{m}(A) = \mathbf{m}(A \cap (1/2)_{\mathbf{X}}) + \mathbf{m}(A \cap (1/2)_{\mathbf{X}}') = 2\mathbf{m}(A \cap (1/2)_{\mathbf{X}}) = 2.2\mathbf{m}(A \cap (1/2)_{\mathbf{Y}})$ and consequently $\mathbf{m}(A) = 0$.

On the other hand, if $\mathbf{m}(A) = 0$ for any $A \in \sigma$, then $\sigma_{\mathbf{m}} = \sigma$ and hence $(1/2)_{\mathbf{X}} \in \sigma$ implies $(1/2)_{\mathbf{X}} \in \sigma_{\mathbf{m}}$.

To ensure σ_{m} to be a fuzzy algebra, it is enough to ensure σ_{m} to be nonempty and closed under fuzzy union (or fuzzy intersection).

<u>Proposition</u> 2. Let $m(0_X) = 0$ and let m satisfies the null-additivity condition

(*) $N \in \sigma$, $m(N) = 0 \implies \forall A \in \sigma \text{ it is } m(A) = m(A \cup N)$ Then σ_m is a fuzzy algebra. Proof.

Let A, B \in $\sigma_{\underline{m}}$. Then for any C \in σ we have

 $\mathbf{m}(C) = \mathbf{m}(C \cap A) + \mathbf{m}(C \cap A') = \mathbf{m}(C \cap A \cap B) + \mathbf{m}(C \cap A \cap B') + \mathbf{m}(C \cap A')$ On the other hand, it is

 $\mathbf{m}(\mathsf{C} \cap (\mathsf{A} \cap \mathsf{B})') = \mathbf{m}((\mathsf{C} \cap \mathsf{A}') \cup (\mathsf{C} \cap \mathsf{B}')) =$

 $= \mathbf{m}((C \cap A' \cap A) \cup (C \cap B' \cap A)) + \mathbf{m}((C \cap A' \cap A') \cup (C \cap B' \cap A')) =$ $= \mathbf{m}(C \cap B' \cap A) + \mathbf{m}(C \cap A').$

The previous equality follows from $\mathbf{m}(A' \cap A) = 0$ and the null-additivity of \mathbf{m} . Note that the null-additivity implies $\mathbf{m}(H) = 0$ for any fuzzy subset $H \in \sigma$ such that $H \subset N$ for some N fulfilling $\mathbf{m}(N) = 0$.

Now, it is evident that

$$\mathbf{m}(C) = \mathbf{m}(C \cap (A \cap B)) + \mathbf{m}(C \cap (A \cap B)')$$

and hence the fuzzy intersection (A \cap B) is an element of σ_m . Thus σ_m is a fuzzy algebra. $\quad\blacksquare$

Note that the null-additivity (*) is fulfilled e.g. for subadditive fuzzy measures. If the condition (*) is not fulfilled, σ_{m} may be not closed under union and intersection.

Example 1. Let $X = \{x_1, x_2\}, \sigma = \mathcal{F}(X) = \{A = (a_1, a_2) \in [0, 1]^2\}, \text{ and let } \mathbf{m}(A) = \min \{2a_1, 2a_2, 1\}$. Then

- 1) $\mathbf{m}(0_{\mathbf{X}}) = 0$ and hence $\sigma_{\mathbf{m}}$ is nonempty
- 2) $\mathbf{m}(1_{\mathbf{X}}) = 1$ and hence $(1/2)_{\mathbf{X}}$ is not contained in $\sigma_{\mathbf{m}}$
- 3) Let A = (1/2,0). Then for any $B \in \sigma$ it is

$$\begin{split} \mathbf{m}(\mathbf{A} \cap \mathbf{B}) &= \min \left\{ \min \left\{ 1, \ 2\mathbf{b}_{1} \right\}, \ \min \left\{ 0, \ 2\mathbf{b}_{2} \right\}, \ 1 \right\} = 0 \\ \mathbf{m}(\mathbf{A}' \cap \mathbf{B}) &= \min \left\{ \min \left\{ 1, \ 2\mathbf{b}_{1} \right\}, \ \min \left\{ 2, \ 2\mathbf{b}_{2} \right\}, \ 1 \right\} = \\ &= \min \left\{ 2\mathbf{b}_{1}, \ 2\mathbf{b}_{2}, \ 1 \right\} = \mathbf{m}(\mathbf{B}) \ , \ \text{so that} \end{split}$$

 $\begin{array}{lll} m(B) = m(B \cap A) + m(B \cap A'). & \text{This implies } A \in \sigma_{\underline{m}} & \text{. Similarly we can show that } C = (0,1/2) \in \sigma_{\underline{m}} & \text{. But then } A \cup C = (1/2)_{\underline{X}} & \text{,} \\ so & \text{that } \sigma_{\underline{m}} & \text{is not closed under fuzzy union.} & \blacksquare \end{array}$

<u>Proposition</u> 3. Let $\{A_1, \ldots, A_k\} \in \sigma_m$, $k \in N$, be a system of pairwise W-disjoint fuzzy subsets (see e.g. [4]), i.e. $A_i \leq A_j$, whenever $i \neq j$. Then under the condition of Proposition 2 it is

$$\mathbf{m}(\bigcup_{i=1}^{k} \mathbf{A}_{i}) = \sum_{i=1}^{k} \mathbf{m}(\mathbf{A}_{i}) .$$

Proof.

Let k=2, i.e. $A_1=A$, $A_2=B$ and $A\le B'$, A, $B\in\sigma_m$. Then $m(A\cap A')$ is zero and $(A\cap B)\le (A\cap A')$, so that $m(A\cap B)=0$. Then the null additivity of m implies

 $\mathbf{m}(A \cup B) = \mathbf{m}((A \cup B) \cap A) + \mathbf{m}((A \cup B) \cap A') = \mathbf{m}(A) + \mathbf{m}(B \cap A')$ and $\mathbf{m}(B) = \mathbf{m}(B \cap A) + \mathbf{m}(B \cap A') = \mathbf{m}(B \cap A')$. It follows

 $\mathbf{m}(A \cup B) = \mathbf{m}(A) + \mathbf{m}(B)$. For $k \ge 2$ we can use the induction because of the pairwise W-disjointness of $\{A_1, \ldots, A_k\}$ implies the W-disjointness of $\{A_1, \ldots, A_k\}$ and $\{A_1, \ldots, A_k\}$ implies the W-disjointness of $\{A_1, \ldots, A_k\}$ implies $\{A$

<u>Definition</u> (see [3]). Let σ be a soft (i.e. $(1/2)_{\chi} \notin \sigma$) fuzzy algebra (fuzzy σ -algebra). A mapping $\mathbf{p}: \sigma \to [0,1]$ is called a fuzzy P-measure on σ if the followings are fulfilled:

- i) $\forall A \in \sigma : p(A \cup A') = 1$
- ii) \forall $\{A_n\}$ \subset σ , $A_n \leq A_n$ whenever $n \neq m$, and $(\bigcup A_n) \in \sigma$: $p(\bigcup A_n) = \sum p(A_n)$.

Corollary 1. Let $\mathbf{m}(0_{\mathbf{X}}) = 0$, $\mathbf{m}(1_{\mathbf{X}}) = 1$ and let \mathbf{m} be null-additive on σ . Then $\sigma_{\mathbf{m}}$ is a soft fuzzy algebra and if \mathbf{m} is continuous from below, then \mathbf{m} restricted to $\sigma_{\mathbf{m}}$ is a fuzzy P-measure on $\sigma_{\mathbf{m}}$. Proof.

It is enough to prove the validity of the condition ii) for m/σ_m . For finite sequences the result is contained in Proposition 3. For infinite sequences $\{A_n\}$, the continuity from below of m implies

$$\mathbf{m}(\bigcup_{\mathbf{A}_{\mathbf{n}}} \mathbf{A}_{\mathbf{n}}) = \lim_{\mathbf{k}} \mathbf{m}(\mathbf{A}_{\mathbf{1}} \cup \ldots \cup \mathbf{A}_{\mathbf{k}}) = \lim_{\mathbf{k}} (\mathbf{m}(\mathbf{A}_{\mathbf{1}}) + \ldots + \mathbf{m}(\mathbf{A}_{\mathbf{k}})) = \sum_{\mathbf{m}} \mathbf{m}(\mathbf{A}_{\mathbf{n}}). \quad \blacksquare$$

Note that if \boldsymbol{n} is continuous on a fuzzy $\sigma\text{-algebra}\ \sigma$, then if $\sigma_{\boldsymbol{m}}$ is a soft fuzzy algebra, it is also a soft fuzzy $\sigma\text{-algebra}.$ However, this condition is not a necessary one.

Example 2. We take X and σ from Example 1. We put

$$\mathbf{m}(A) = (1_{11/4,11}(a_1) + 1_{11/4,11}(a_2))/2 \text{ for any } A \in \sigma.$$

Then **m** is not continuous on σ , as $(1/4)_{\mathbf{X}} = \lim_{n} (1/4 + 1/n)_{\mathbf{X}}$, but

 $\mathbf{m}((1/4)_{\mathbf{X}}) = 0 \neq 1 = \lim_{n \to \infty} \mathbf{m}((1/4 + 1/n)_{\mathbf{X}})$. On the other hand,

$$\sigma_{\underline{\mathbf{m}}} = \left\{ \mathbf{A} \in \sigma, \ \mathbf{a}_{\underline{\mathbf{i}}} \notin]1/4, 3/4[\right\}$$

is a soft fuzzy σ-algebra.

<u>Proposition</u> 4. Let (X, σ, p) be a given fuzzy probability space, i.e. σ is a soft fuzzy algebra and p is a fuzzy P-measure on σ . Then $\sigma_p = \sigma$.

Proof.

Let $A \in \sigma$. For any $B \in \sigma$ it is $(B \cap A) \leq (B \cap A')' = (B \cup A')$ and hence $(B \cap A)$ and $(B \cap A')$ are W-disjoint elements of σ . Then $p(B \cap A) + p(B \cap A') = p((B \cap A) \cup (B \cap A')) = p(B \cup (A \cap A')) = p(B)$, and consequently $A \in \sigma_m$. For the last equality see e.g. [4].

Remark. Proposition 4 shows that under the conditions of Corollary 1, σ is the greatest soft fuzzy subalgebra of σ on which m is a fuzzy P-measure.

The assertion iii) of Proposition 1 gives a necessary condition for an element A of σ to be an element of σ_m , namely $m(A\cap A')=0$ and $m(A\cup A')=m(1_\chi)$. However, this condition is not sufficient.

Example 3. Again we take X and σ from Example 1. Now, we define

$$\mathbf{m}(A) = \max \left\{ (2\max \{a_1, a_2\} -1), 0 \right\} \text{ for any } A \in \sigma.$$

m is null-additive and $\sigma_{\bf m}$ is a soft fuzzy σ -algebra. Take A = (1,1/4). Then ${\bf m}(A\cap A')={\bf m}((0,1/4))=0$ and ${\bf m}(A\cup A')={\bf m}((1,3/4))=1$, but ${\bf m}(1_{\bf X})=1\neq 3/2={\bf m}(A)+{\bf m}(A')={\bf m}(1_{\bf X}\cap A)+{\bf m}(1_{\bf X}\cap A')$. It follows that A is not an element of $\sigma_{\bf m}$.

In the following proposition we give the conditions which make the previous necessary condition for an element of σ_m a sufficient one.

<u>Proposition</u> 5. Let **m** be a monotone valuation on σ , i.e. for $A \subset B$ it is $\mathbf{m}(A) \leq \mathbf{m}(B)$ and $\mathbf{m}(A) + \mathbf{m}(B) = \mathbf{m}(A \cap B) + \mathbf{m}(A \cup B)$ for any $A, B \in \sigma$. Then

$$\sigma_{\mathbf{m}} = \left\{ \mathbf{A} \in \sigma; \ \mathbf{m}(\mathbf{A} \cap \mathbf{A}') = 0 \ \text{and} \ \mathbf{m}(\mathbf{A} \cup \mathbf{A}') = \mathbf{m}(\mathbf{1}_{\mathbf{X}}) \right\}.$$

Proof.

It is enough to prove that $\mathbf{m}(A \cap A') = 0$ and $\mathbf{m}(A \cup A') = \mathbf{m}(1_{\mathbf{X}})$ for an element $A \in \sigma$ implies $A \in \sigma_{\mathbf{m}}$. Recall that $\sigma_{\mathbf{m}}$ is nonempty iff $\mathbf{m}(0_{\mathbf{X}})$ equals zero. Take any $B \in \sigma$. Then the valuation property of \mathbf{m} implies $\mathbf{m}(B \cap A) + \mathbf{m}(B \cap A') = \mathbf{m}((B \cap A) \cup (B \cap A')) + \mathbf{m}((B \cap A) \cap (B \cap A')) = \mathbf{m}(B \cap (A \cup A')) + \mathbf{m}(B \cap (A \cap A'))$.

From the monotonicity of m it is $0 \le m(B \cap (A \cap A')) \le m(A \cap A') = 0$, i.e. $m(B \cap (A \cap A')) = 0$. Further, the valuation property implies

$$\mathbf{m}(\mathsf{B} \, \cap \, (\mathsf{A} \, \cup \, \mathsf{A}')) = \mathbf{m}(\mathsf{B}) + \mathbf{m}(\mathsf{A} \, \cup \, \mathsf{A}') - \mathbf{m}(\mathsf{B} \, \cup \, (\mathsf{A} \, \cup \, \mathsf{A}')) = 1$$
 because of $1 = \mathbf{m}(\mathsf{A} \, \cup \, \mathsf{A}') \leq \mathbf{m}(\mathsf{B} \, \cup \, (\mathsf{A} \, \cup \, \mathsf{A}')) \leq 1$. It follows
$$\mathbf{m}(\mathsf{B}) = \mathbf{m}(\mathsf{B} \, \cap \, \mathsf{A}) + \mathbf{m}(\mathsf{B} \, \cap \, \mathsf{A}') \text{, so that } \mathsf{A} \in \sigma_{\mathbf{m}} \text{.} \quad \blacksquare$$

References

- [1] Carathéodory, C., Vorlesungen ther reele Funktionen. Leipzig Berlin, 1927.
- [2] Khalili, S., Fuzzy measures and mappings. J. Math. Anal. Appl. 68 (1979), 92-99.
- [3] Piasecki, K., Probability of fuzzy events defined as denumerable additivity measure. Fuzzy Sets and Systems 17 (1985), 271-287.
- [4] Piasecki, K., Fuzzy partitions of sets. Busefal 25 (1986), 52-60.
- [5] Zadeh, L.A., Fuzzy sets. Inform. Control 8 (1965), 338-353.