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Abstract. For a given fuzzy measurable space (X,o) and a fuzzy set
function m:0—R we define the system O of all fuzzy sets measurable
in the sense of Carathéodory. We study the properties of o Under
simple general conditions we show that o is a soft fuzzy algebra and

m is a fuzzy P-measure on o

Let X be a nonempty set. The symbol %(X) denotes the family of
all fuzzy subsets of X, i.e. F(X) = [0,1]x . The operations of the
fuzzy union, fuzzy intersection and fuzzy complement are defined in
the traditional Zadeh’s sense [5],

(A v B)(x) sup (A(x),B(x))

(A n B)(x) = inf (A(x),B(x))

A (x) =1 - A(x)
for any A, B € #(X) and x € X.

A family o < F(X) of fuzzy subsets of X is called a fuzzy algebra
(fuzzy o-algebra), see [2], iff:
(A1) 0x €0 (we put cx(x) =c for any x € X, ¢ € [0,1])
(A2) A € o implies A’ € o

(A3) A, B e o implies AuB e o ({An}nEN implies U An € o in the
n€N
case of a fuzzy o-algebra).

Let m be a function defined on the fuzzy sets from ¢, m:o—R, where
R is the set of all real numbers. We will distinguish a family o, S
of fuzzy sets measurable in the Carathéodory’s sense following the

classical concept introduced in [1],

oy = { Ae€o; YVBeo: m(Bl =m(BnA) + m(BnA’) }

For the above defined system o, e have the following results.



Proposition 1.

i) o is closed under complementation, i.e. A e oy = A’ e %

ii) o is nonempty iff m(Ox) =0 iff {Ox; lx} c oy
iii) A e o, = m(ANnA) =0and m(AuA) =mlA) + m(A’) = m(lx)
iv) Let (1/2)x € o; then (1/2)x €0 iff m(A) = O for all A € o.
Proof'. - ’
i) is obvious because of A’’ = A.
ii) Let oh # @. Then there is an element A € wm and hence ,
m(Ox) = m(Ox n A) + m(Ox NnAY) = 2m(0x) and consequently m(Ox) = 0.
Now, let m(Ox) = 0. For any A € o it is m(A) = m(A n Ox) + m(A n lx)
and hence both Ox and lx are contained in o The last implication,
namely that {Ox; 1x} <oy implies that L is nonempty, is obvious.
iii) Let A € o Then
m(ANnA)=m(AnA nA) +m(AnA nA)=2m(AnA) =0. Further
m(AuvA) =m((AUA)nA) =m((AUA)nA)=mA) +nA) =
m(1x N A) + m(lx nA)= m(lx) .
iv) Let (1/2)x €0, . Then (1/2)X = (1/2)x and for any A € o it is

m(A) m(A n (1/2)x) + m(A n (1/2)x’) = 2m(A n (1/2)x) =

2.2m(A n (1/2)x) and consequently m(A) = 0 .
On the other hand, if m(A) = O for any A € ¢, then o= and hence

(172)y € o implies (172)yeo . =

To ensure T to be a fuzzy algebra, it is enough to ensure % to

be nonempty and closed under fuzzy union (or fuzzy intersection).

Proposition 2. Let m(Ox) = 0 and let m satisfies the null-additivity
condition
(*) Neo, m(N) =0 = VAeoitis m(A) = m(A UN)
Then o is a fuzzy algebra.
Proof'.
Let A, B € o Then for any C € o we have
m(C) =m(CnA) +mCnA)=m(CAnANB) +m(CAnAANB)+mnlCnhnA)
On the other hand, it is
m(Cn (AnB)') =m((CnA)vu (CnhnB)) =
m((CAA nAUCEAB nA)) +m(CAA AA)U(CAB nA)) =
m(C n B> nA) + m(C nA’)

The previous equality follows from m(A’ n A) = O and the null-
additivity of m. Note that the null-additivity implies m(H) = 0 for
any fuzzy subset H € o such that H ¢ N for some N fulfilling m(N) = 0.



Now, it is evident that
m(C) = m(Cn (AnB)) + m(Cn (AnB)’)
and hence the fuzzy intersection (A n B) is an element of o Thus o

is a fuzzy algebra. ]

Note that the null-additivity (*) is fulfilled e.g. for subaddi-
tive fuzzy measures. If the condition (*) is not fulfilled, o, may be

not closed under union and intersection.

Example 1. Let X = {x, x}, o = #(X) = {A = (a,a) € [0,1]2}, and

let m(A) = min {2a1, 2a2, 1} . Then

1) m(Ox) = 0 and hence o is nonempty
2) m(1x) = 1 and hence (1/2)x is not contained in o
3) Let A = (1/2,0). Then for any B € ¢ it is

m(A n B) = min {min {1, 2b1}, min {0, 2b2}, 1} =0 ,

m(A’ n B) min {min {1, 2b1), min {2, 2b2}, 1} =

min (2b1, 2b2, 1} = m(B) , so that
m(B) = m(B n A) + m(B n A’). This implies A € o - Similarly
we can show that C = (0,1/2) e LA But then A uC = (1/2)x R

so that o is not closed under fuzzy union. ]
Proposition 3. Let {Af""Ak} co k € N, be a system of pairwise

W-disjoint fuzzy subsets (see e.g. [4]), i.e. A1 = Aj’ whenever i = j.
Then under the condition of Proposition 2 it is
m( G A) = E}m(Ai)

i=1 i=1
Proof'.
Let k =2, i.e. A1 = A, A2 =Band A< B , A, Be LA Then m(A n A’)
is zero and (AnB) s (AnA’), so that m(A n B) = 0 . Then the null
additivity of m implies
m(AuUB) =m((AUuB)nA) +m((AUB) nA’) =m(A) + m(Bn A’) and
m(B) = m(BnA) + m(Bn A’) =m(BnA) . It follows
m(A v B) = m(A) + m(B) . For k 2 2 we can use the induction because of
the pairwise W-disjointness of {A1""’ Ak} implies the W-disjointness
of (A1 U...U Ak—1) and Ak . n



Definition (see [3]). Let o be a soft (i.e. (1/2)x ¢ o) fuzzy algebra
(fuzzy o-algebra). A mapping p:o —> [0,1] is called a fuzzy P-measure
on o if the followings are fulfilled:
i) VAeo: pl(AulA) =1
ii) v {An} c o, An = Am’ whenever n # m , and (U An) € 0 :
p( U An) =¥ p(An) . n

Corollary 1. Let m(Ox) =0, m(lx) = 1 and let m be null-additive on
0. Then Um is a soft fuzzy algebra and if m is continuous from below,
then m restricted to am is a fuzzy P-measure on vm

Proof.

It is enough to prove the validity of the condition ii) for m/trm . For
finite sequences the result is contained in Proposition 3. For infini-
te sequences {An) , the continuity from below of m implies

m( U An) = lim m(A1 U...V Ak) = lim (m(Al) +...4 m(Ak)) =Y m(An). [

Note that if m is continuous on a fuzzy o-algebra o , then if o
is a soft fuzzy algebra, it is also a soft fuzzy o-algebra. However,

this condition is not a necessary one.

Example 2. We take X and o from Example 1. We put

m(A) = (1]1/4,1](a1) + 1]1/4’1](a2))/2 for any A € o.
Then m is not continuous on o, as (1/4)x = lim (174 + 1/n)x , but

n

m((1/4)x) =0=%1=1imm((1/74 + 1/n)x) . On the other hand,
n

o = {A €0, a ¢ ]1/4,3/4[}
m 1

is a soft fuzzy o-algebra. ]

Proposition 4. Let (X,o,p) be a given fuzzy probability space, i.e. o
is a soft fuzzy algebra and p is a fuzzy P-measure on o. Then 6p = 0.
Proof.

Let A€ 0. For any Be ¢ it is (Bn A) = (Bn A’)’ = (BuUu A’) and
hence (B n A) and (B n A’) are W-disjoint elements of ¢. Then

p(BNnA) + p(BnA’') =p({BnA) u(BnA’)) =p(Bu (A nA’)) = p(B),

and consequently A € o . For the last equality see e.g. [4]. n



Remark. Proposition 4 shows that under the conditions of Corollary 1,
% is the greatest soft fuzzy subalgebra of o on which m is a fuzzy

P-measure. [

The assertion iii) of Proposition 1 gives a necessary condition
for an element A of o to be an element of LA namely m(A n A’) =0

and m(A v A’) = m(lx) . However, this condition is not sufficient.

Example 3. Again we take X and o from Example 1. Now, we define
m(A) = max {(Zmax (al,az} —1),0} for any A € o .

m is null-additive and o is a soft fuzzy o-algebra. Take A = (1,1/4).
Then m(A n A’) = m((0,1/4)) = 0 and m(A v A’) = m((1,374)) = 1, but
m(lx) =1 # 3/2 = m(A) + m(A’) = m(lx n A) + M(lx n A’) . It follows

that A is not an element of am . [ ]

In the following proposition we give the conditions which make the

previous necessary condition for an element of ah a sufficient one.

Proposition 5. Let m be a monotone valuation on o, i.e. for A ¢ B it
is m(A) = m(B) and m(A) + m(B) = m(A n B) + m(A v B) for any A, B € o.
Then

o= {é € o; m(AnA’) =0and m(AuUA’) = m(lx)} .

Proof.

It is enough to prove that m(A n A’) = 0 and m(A v A’) = m(lx) for an

element A € o implies A € L Recall that'o‘m is nonempty iff m(Ox)

equals zero. Take any B € o. Then the valuation property of m implies

m(BnA) +m(BnA) =m((BnA)u(BnA)) +m((BnA)n(BnA))-=

=m(Bn (AU A)) +mBn (AnA))

From the monotonicity of m it is O = m(Bn (An A’)) =m(An A’) =0,

i.e. m(Bn (AN A’)) =0 . Further, the valuation property implies
mBn (AuvuA)) =mB) +m(AuvuA’)-m(Bu (AuvA) =1

because of 1 = m(A U A’) =m(Bu (AU A’)) =1 . It follows

m(B) = m(Bn A) + m(Bn A’) , so that A e LA [
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