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1. INTRODUCTION

The notion of ill defined fuzzy events is tentatively propo-
sed in [5] where it follows from some considerations on the Bayes
principle for fuzzy events. The main goal of this paper is a
presentation of the final version of ill defined fuzzy random
events and investigation of some properties of redefined here
notion. First, recall the motivation on which is based the defi-
nition of ill defined fuzzy events.

Let ( X,0 ) be a given fuzzy measurable space. Here X is a
nonempty crisp set of elementary events and o is a family of fu-
zzy random events defined as a fuzzy algebra in the sense given
by Klement et al. [2] , i.e. o is closed under complementation
and union, and it contains the fuzzy subset OX : X — {0}.

Note, that union and intersection of fuzzy subsets are expressed
here respectively by Zadeh’s operators supremum y, and infimum AL
The operator of complementation is given here as the Lukasie-
wicz’s negation [4] , w° = 1 - pu. By F(X) we denote the family of
all fuzzy subsets of X, i.e. F(X) = [ 0,1 ]X . Start-point of
our considerations is based on next definitions:

Definition 1.1.[7]: Each pair of fuzzy subsets p, v € o is called
W-disjoint iff the first is contained in the complement of the
second, i.e. u = v’'.

Definition 1.2.[7]: Each fuzzy subset p € o is called W-empty set
iff it is W-disjoint with itself, i.e. iff it is contained in its

complement, p = u’.

Definition 1.3.[7]: Each fuzzy subset pu € o is called W-universum

iff its complement is W-empty set, i.e. iff it contains its



complement, u’ = pu.

In the crisp case, the classical "sound" empty set A fulfills
following three conditions: A is an empty set, the complement A’
is an universum, A’ # A. For the fuzzy case we denote the set of
all "sound" W-empty sets from o by the symbol £(o) describing the
next family

(o) ={ u e o: p is W-empty set, u’ is W-universum, p = p’}.
The classical measure theory essentially exploits the fact that
for each crisp subset A, A n A’ is a "sound" empty set. There is
no "ill" defined element A, for which A n A’ # 0. In the fuzzy
case, we are in a quite different situation. We will denote the
set of all W-ill defined elements connected with fuzzy algebra o
by the symbol p(e¢) describing the following family

ple) = { p e F(X): pAp’ ¢ e(o) }.
It is easy to see that for any o, p(eo) 3 [ % ]X' Thus note that
if the fuzzy algebra o does not contain any W -ill defined ele-
ment, i.e. o n p(c) = @ , then o is a soft fuzzy algebra distin-
guished by Piasecki [8] (a fuzzy algebra not containing the ele-
ment [ % ]X .Moreover, in this case we can define a probability of
fuzzy random events from o as a fuzzy P -measure described by

Piasecki in following manner.

Definition 1.4. [8] : Let o c F(X) be a soft fuzzy algebra. Each
mapping p: o — [0,1] satisfying next conditions:

(P1) if u € o is a W —universum then p(u) = 1

(P2) if {un} < o is such sequence of W -disjoint fuzzy
H
pisup{p }) = L plp) ;

n
is called a fuzzy P -measure on o.

1A

random events (ui whenever i # j ) that sgp{un} € o then

On the other side, in [5] the relation of W -disjointness is
replaced by the relation of disjointness under measure
(m -disjointness ). Some consequences of this replacement will be

investigated bellow.

2. m~ILL DEFINED ELEMENTS



Let m: o — [0,1] be a fuzzy probability measure in the sen-

se of Klement et al. [2], i.e. the mapping m satisfies following

conditions:
m(OX) =0 (2.1.) ; m(lx) =1 (2.2)
Vuveo: mp)+mwv) =mnlpyv)+npAv) (2.3)
v {un} Co:p apeos m(un) 2 m{u) (2.4)

In [5] we have introduced the concept of disjointness under measure .

There was proposed :

Definition 2.1. : Each pair of fuzzy subsets p,v € o is called

m -disjointness iff m(p Av) =0 .

The disjointness implies the definition of an empty set. In the

crisp case, a set A is empty iff it is disjoint with itself. The-

refore, using m -disjointness we get m(u) = 0 for fuzzy subset u

which is empty under measure.

Definition 2.2. : Each fuzzy subset p € o is called m -empty set
iff m(p) =0 .

The notion of an universum is a dual notion to that of an empty

set.
Definition 2.3. : Each fuzzy subset pu € o is called m -universum
iff m(p) = 1.

The family sm(v) of all "sound" m -empty subset from o we distin-
guish in like way as the family e€(o) of all "sound" W -empty sub-
set from o.- We propose to accept
em(w) ={ peoc:uism-empty set, g’ is m -universum} (2.5)

Note that for all p € sm(a) we have p # p’. Therefore, the third
condition from the definition of £(o¢) is omitted above.
The family pm(a) of all m -ill defined elements is as follows

p (o) ={ peFX: p Ay ¢ e (o)} (2.6)

Moreover, in [6] the family o of measurable fuzzy random
events from o is distinguished in the following manner

o= {peoc: Vveo, mv) =mv Ap) + mlv Ap’)} (2.7)
The concept of this notion follows from analogous definition for-
mulated for classical measure theory by Carathe’odory [1]. In [8]
it is proved that, for any fuzzy probability measure m on o, the
family o is a soft fuzzy algebra. For presented above families

we have :

Theorem 2.1 For any fuzzy probability measure m:00 — [0, 1]



the following conditions hold:

e;(v) ={peo: puAypy e em(v)} =0 (2.8)
o nplo) =2 (2.9)
m m

o= (on pm(v)) Vo (2.10)

Proof : Let p € o . In [6] it is shown that then m(p A p’) = 0 and
m(p A p) =1. So, o < e;(c).
Conversely, let u € e;(c). Then, for any n € ¢ we have (see e.g.
(91):
m(7)
0

mn A (pyp))=nlnAp y @A),

mn A (uAw)) =mn((nAu) A(nAp))

Thus, by the valuation property (2.3), we get

n((nAp)y MA)) +man AW A Ap)) =
min Ap) + mn Ap) .

So, e;(w) <o and the condition (2.8) holds.

m(7)

Due to (2.8) the condition (2.9) is obvious. Furthermore, we have
c={peoc: pAp ¢ em(v)} u{peo: pAp e em(c)} =

= (o n pm(w)) Vo

Theorem 2.2. : For any fuzzy probability measure m: ¢ — [0,1] we

have 0X € em(c) (2.11)
(1/2)x € em(v) (2.12)
V 1,V € em(a) t Ly E em(a) (2.13)
YV ue em(v),v eoc : uhve em(w) (2.14)

Proof : The condition (2.11) follows from (2.1) and (2.2). Sup-
pose that (1/2)x € em(a). Then we obtain

m(p yv) =m(p) + mp) ~-m(pAv) =0 and
m(p’ Av’) =m(p) + m(v’) - m(p vv') =1

So, sm(v) is closed under union. Moreover, if u e em(w) and v € o
then 0 = m(p Av) =m(p) =0 and 1 2 m(p yv’') =2 mp’) = 1.

Therefore, the intersection p A v belongs to em(c).

Theorem 2.3. For any fuzzy probability measure m: ¢ — [0,1] we

have (1/2)X € pm(w) (2.15)
pm(a) nPX) =2 (2.186)
VY ue pm(a) R VA = pm(v) (2.17)

Here P(X) is the family of all crisp subsets of X.

Proof : The condition (2.15) follows from (2.12). The condition

(2.16) 1is obvious because we have AN A =g € em(a) for all



A € P(X). The definition of pm(v) implies (2.17).

Generalizing the Piasecki’s definition of soft fuzzy algebra
we propose to accept:

Definition 2.4. : A fuzzy algebra o will be called a m -soft
fuzzy algebra iff it does not contain any m -ill defined element,
i.e. pm(c) no=0.

The property (2.10) implies that any m -soft fuzzy algebra
contains only such fuzzy random events which are measurable under
measure m: o — [0,1]. These facts together with some results
given in [6] implies the next theorenm.

Theorem 2.4. : If a fuzzy probability measure m is defined on
m -soft fuzzy algebra o then it is a fuzzy P -measure on o.

It is easy to see that the next equalities and inclusions

hold:

el ) c e (o) e (o) (2.18)
m m m m
pm(O') (2.19)

for any fuzzy probability space (X,o,m).

p(vm) > pm(ch)

3. m~ILL DEFINED ELEMENTS: A CASE OF GENERATED FUZZY o-ALGEBRA

Let 4 be a given o -algebra of crisp subsets from X. In this
part we shall consider family of random fuzzy events defined as
generated fuzzy o -algebra $F(4), i.e. family of all &£ -measurable
fuzzy subsets of X.

The problem of integral representation of a fuzzy
probability measure m: ¥(d) — [0,1] was solved by Klement:
Theorem 3.1. [3] : Let m:¥(«4) — [0,1] be a fuzzy probability
measure (see [2]) on generated fuzzy o -algebra %(«£). Then there
exists one and only one probability measure P: 4 — [0,1] and a
P -almost everywhere uniquely determined Markov kernel
Ki (X ,d)x 3[0’1[ — [0,1] such that

Ve F(4): m(p) = Kix, [0,u(x)[) dP(x) . (3.1)
X
Recall that the symbol 8[0’1[

subset from the interval [0,1[, and a Markov kernel K is a

denotes the family of all Borel

function fulfilling next two properties:

V B e 3[0 1 K(.,B) : X — [0,1] is 4 -measurable (3.2)



VxeX: Kix,.) : 3[0,1[ —> [0,1] is a probability measure
on 3[0’1[ . (3.3)
Note that if, for each x € X, the mapping K(x,.) describes the
probability measure with uniform distribution on the interval
[0,1[ then fuzzy probability measure given by (3.1) is a
probability of fuzzy events introduced by Zadeh [10].

Come back now to the case of fuzzy probability measure gene-
rated by a Markov -kernel K. Then, for the family of all m -ill

defined elements connected with generated fuzzy o -algebra, we

get:
Theorem 3.2. : For any fuzzy event u € pm(g(d)) n ¥(4) and for
any fuzzy event v € em(?(d)) we have
A (u,v) = [ K(x, [p(x), »(x)[) dP(x) = 0  (3.4)
{x:pu(x) < v(x)}
Proof :
0sA (gv) s [ K(x, [0, v(x)[) dP(x) =

{x: u(x) < v(x)}
= [ K(x, [0, »()) dP(x) = m(») =0 g.e.d.
X

Thus, if for each x € X, the probability measure K(x,.) has the
uniform distribution (i.e. m is Zadeh's probability of fuzzy eve-
nts) then, for each p € pm(g(ﬂ)) n F(d4) and v € em(?(d)) we get

P({x: p(x) < wv(x)}) =0 (3.5)
The last property was used in [5] for definition of the family of
all m -ill defined elements from generated fuzzy o -algebra. Due
to the Theorem 3.2 we know that validity of proposed there defi-
nition is limited to the case when the mapping m:%(4)— [0,1] is
generated by a Markov -kernel K and a probability measure P such
that for a.e. x € X, the distribution K(x, .) has a connected
support (i.e. its support is an interval or a point). Thus we can
say that proposed here Definition 2.4. is a well formalized gene-

ralization of ideas given in [5].
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