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ABSTRACT
We present a generalization of the Bayes principle for the
fuzzy probability measures. We replace the W-disjointness
introduced by Piasecki (1985) by the m-disjointess. The validity
of the m-Bayes formula for any fuzzy probability measure m is

proved.
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1. Preliminary remarks on fuzzy probability measures

(X,a) will denote a measurable space, i.e. a non-empty set X
equipped with a o -algebra o of crisp subsets of X. A fuzzy sub-
Set A will be identified with its membership functionu, i.e. an «
-measurable function u: X—[0,1]. For a crisp subset A we will
also use pu = IA. The generated fuzzy o -algebra of all a —-measur-
able fuzzy subsets of X will be denoted by F(a). Let a fuzzy o
-algebra o, a« ¢ o ¢ F(a), be given. Klement, Lowen and
Schwyhla [1] defined a fuzzy probability measure on o as a
continuous from below mapping m:o—[0,1] fulfilling the
following conditions :

m( 0, ) =0, m(1,) =1 (1)

X
Vigveo: m(puwv)+mpnv)=mnlu) + nw) (2)
Here u, n are the fuzzy connectives of the fuzzy union and
the fuzzy intersection. Smets [7] presented a similar definition
of fuzzy probability measure, where (1) and (2) hold and the
continuity from below is replaced by the continuity from above.

In what follows we will work with original Zadeh’'s fuzzy



connectives of union, intersection and complement, i.e. with max,
min and o’ =1 - p.

It is easy to see that Zadeh’s concept [8] m(p) = Su dP for
X
a given probability P on (X,a) defines a fuzzy probability

measure in the sense of both [1] and [7]. Moreover, in this case
we get

m(p') =1 - m(p) (3)

On the other hand, a fuzzy probability measure m on a fuzzy
o -algebra o induces a probability P on the o -algebra «a,

VAea: P(A)=nmn( I, ) (4)

In what follows, most of the assertions are ( or may be )
valid in the P -almost-everywhere sense. For the sake of
simplicity we will omit " P-a.e. " whenever possible.

The mapping m( . /p) : 0—[0,1] defined, for any fuzzy

probability measure m and for each p € o such that m(p) = 0 , by

identity
m(v/u) = _Eé%ﬁ?_ﬂl , V€0 (5)

will be called a conditional fuzzy probability given u (see
e.g.[4]).

2. W-Bayes fuzzy partitions and the Bayes formula

Piasecki in [4] has defined, by means of a fuzzy probability
measure m, a Bayes fuzzy partition ( briefly BFP ) of X as the
finite or countable sequence {ui}ieI of fuzzy subsets satisfying
the following conditions :

(R1) the fuzzy subsets M, are pairwise W -separeted, 1i.e.

My = “j whenever i, jelI , 1 # j

(R2) m( sup{ui} ) =1

(R3) m(ui) >0 foreach i € I .

A sequence (ui}
called W -BFP.

iel satysfying (R1), (R2), (R3) will be
We recall some of Piasecki’s definitions and results.

Definition 2.1. Let o be a fuzzy o -algebra ( fuzzy algebra ). If

it does not contain the fuzzy subset (1/2)X . (1/2)X ¢ o , then



it is called a soft fuzzy o -algebra ( soft fuzzy algebra ).
Suppose now that ¢ is a soft fuzzy o -algebra. For this

case, Piasecki [3] has generalized the definition of classical

probability for the fuzzy case as follows.

Definition 2.2. A fuzzy P -measure is a mapping p :0—[0,1] such

that

Vueo: plpup)=1 (6)
if {ui}1EI » By €0, fulfils (R1) then
p( sup{u.} ) =% ply,) (7)
A i i
iel iel

If ¢ is only a fuzzy algebra, we add the assumption
sup{ui} € o to (7). Any fuzzy P -measure is both Klement’s fuzzy
iel
probability measure and Smets’s one.

We are now interested in the Bayes formula.

Definition 2.3. Let m a be given fuzzy probability measure on a
fuzzy o -algebra o , and let o, be a fuzzy subalgebra ( fuzzy
sub - o -algebra ) of o. Then m satisfies the W -Bayes formula on
o, iff for all veo , mv) >0 , and any W -BFP {”i}iEI ,
., € o0 , it holds
i 1
m(uk)m(v/u)
Vkel: m(uk/v) = (8)

L m(p, In(v/p,)
iel

It is easy to see that (8) is equivalent to

m(v) = ¥ m(p, Im(v/p,) =% nv np,) (9)
. i i . i
iel iel

Note that any fuzzy probability measure m satisfies the

W -Bayes formula on «. The main results of Piasecki [4,5] are

presented in the following theorem.

Theorem 2.1. Let m be a fuzzy probability measure on a fuzzy
o -algebra o and let aﬁ be the smallest fuzzy algebra containing
all W -BFP generated by m. Then m satisfies the W -Bayes formula
on 6: ( i.e. on ¢ too ) iff Gﬁ is soft and m is a fuzzy
P -measure on it.

In general, it may happen that c: is not soft, resp. it is



not a fuzzy o -algebra.

Example 2.1. Let o = F(a), P be a probability on ( X,a ),
m(p) = P( p> 1/2 ). Then cﬁ = {peo, P(p=1/2) = 0} is not

a fuzzy o -algebra.

Example 2.2. Let o = F(a), P be a probability on ( X,a ),
m(p) = P( p > 174 ). Then w: = o is not soft.

The fuzzy algebra 0: may be defined in two equivalent ways:

aﬁ ={peo, {mu) fulfils (R1) and (R2)} (10)
c': ={peo, 3{u) sy {u) fulfils (R1) and (R2)} (11)

Piasecki and Switalski [6] have generalized the notion of the

W -disjointess and they have used the following condition to
define a Bayes fuzzy partition

(Rla) the fuzzy subsets My of the sequence {“i}ieI are

pairwise F -separated ( faintly separated ), 1i.e.

By N “j = (1/2)X whenever i, je I, i = j.

A sequence {ui}i satisfying (Ria), (R2)}, (R3) is called F -BFP.

Both concepts Ea - and F - coincide with respect to the
P -measures and the Bayes principle. The only exception is in
defining the fuzzy algebra ax . Using (10) or (11) ( replacing
the W ~disjointness by the F -disjointness )} we can get two

different spaces. If we take m and o of Example 2.1. ,we get

{pee 3 {ui} > u, {ui} fulfils (Rla) and (R2)} = o

{ peo, {upu} fulfils (Rla) and (R2)} = ax .
= 1 W
Let A e a, P(A) € 10,1[. Then pu = IA t s IA’ € o, but pu ¢ o

Thus, in the F -concept we need to work on the fuzzy algebra
ci - wz defined by (10) ( for{u,p’ }are (R1) and (Rla) equivalent)

in order to preserve the equivalence of both W - and F -concepts.

3. m_-Bayes fuzzy partitions and the Bayes formula

Let m be a given fuzzy probability measure ( in sense of
Klement ) on a fuzzy ¢ -algebra ¢, « ¢ o ¢ F(a). In [2] we have

proposed to modify the W - and F -disjointness as follows.



Definition 3.1. Elements u,v € o will be called m -separated
fuzzy subsets iff m(p nv) =0 .

Now, we are able to define m -Bayes fuzzy partition.

Definition 3.2. Let {ui}ieI be a sequence of fuzzy subsets of o

satisfying (R2), (R3) and the following condition:
(R1b) the fuzzy subsets Hy are pairwise m -separated, i.e.

m(u.1 n uj) =0 whenever i, jelI, i=]j.

Then {u.l}iel will be called m -BFP.
Note that if m is a fuzzy P -measure (then o need to be soft)
then any F -BFP is a m -BFP (but not vice versa). Now, we define

the fuzzy algebra U: modifying the expression (10)
c'm“ ={ peo, {pgp) fulfils (R1b) and (R2) } (12)

It is easy to see that c: is a soft fuzzy algebra.

Theorem 3.1. 02 is a soft fuzzy o -algebra iff there exists
u* € o0 such that

i) m(p*) =1 and m(p*’) =0
ii) iff veoc, mwp)=1 and m»y’') =0 , then v = p*

P-a.e., where P = m/a .

Proof. a) lLet cﬁ be a soft fuzzy o -algebra. Denote
u* = ess inf {veo mnp) =1 and m(»’) = 0}

(ess inf is taken with respect to P).

Then there exists a non-increasing sequence of fuzzy subsets
{vn} — u*, v € vz , m(vn) =1, m(vg) =0 for n=1, 2.
Then u* € vﬁ. The continuity from below of tﬁe measure m leads
to m(p*’) = lrilm m(v;l) =0. As u* e o*'; , it follows m(u*) = 1
ii) is obvious.
b) Let i) and ii) are fulfilled for a fuzzy subset u* € o .

From the definition of aﬁ (12) we get u € cz iff m(pup) =1

and m(p np’) =0. The fact (pup) =pnp implies that



T oﬂ iff pup = u* P-a.e., i.e. for P-a.e. x € X ,we have

pix) = p*(x) or u(x) = p*’(x)

Now, let (un} be a nondecreasing sequence of elements of oﬁ

Then sgp{un} € o. For a fixed x € X, we have either

un(x) = pu*’(x) for all neN , 1i.e. sgp{un(x)) = u*' (x) , or

there exists n, e N , H (x) =z p*(x) , 1i.e. for all n = n
0

un(x) z u*(x) and SHP{“n(“)} = u*(x),up to a P -null subset of X.
m

Consequently sgp(u% €0

This fact together with the fact that cz is fuzzy algebra puts an

end to our proof.

Example 3.1. Let m be the Zadeh’'s fuzzy probability measure

M =qis ac -algebra and the

= * =
m(p) =S pdP . Then p 1X y o

X
only Bayes partitions are the crisp ones.

If we take m of Example 2.2. , then a‘: = 0': is not a fuzzy

o -algebra and there exists no u* with the properties i) and ii).

By a slight modification of the Definition 2.3. we get the notion
of m -Bayes formula. A fuzzy probability measure m satisfies the

m -Bayes formula on o, iff (8) is fulfilled for any m -BFP {ui).

Theorem 3.2. Let m be a fuzzy probability measure on a fuzzy

o —algebra ¢. Then it satisfies the m -Bayes formula on o.

Proof. Let (“i}iel be a given m -BFP. It is sufficient to prove
the validity of (9) for any v € oo, i.e.
m(v) = ¥ mv n ui)

jel
We may assume I = {1, 2,... }. Then
v N (u1 v ”2) = (v n “1) v vn uz) (13)
v N (ul n “2) = (v n ul) nn uz) (14)

The valuation property (2) of m implies

mv n (g, vp)) +mvn (g, o)) =mnwvnp) +nlvnp) (15)
1 2 1 2 1 2



My and p, are m -separated, i.e. m(p.1 n uz) = 0 , what implies
m(v n (p.1 v uz)) = m(v n ul) + m(v n uz) (186)
By induction it is easy to prove for finite I that

mv n (vup))=Ymvnpu) (17)
1 ! I 1
If I is countable, we utilise the continuity from bellow of m ‘to

prove (17).

On the other hand, m( v My ) =mv v (v My }J}) = 1 together
I I
with the valuation equality

m(v v (v ”i)) +mv n (v My )) =m(w) + m( v Hy )
I I I
implies m(v) = m(v n (v ui)) g.e.d.
I

Theorem 3. 3. Let m be a fuzzy probability measure on a fuzzy

. m
o -algebra o. Then m is a fuzzy P -measure on o

Proof. Llet p e am . Then {u, p'} fulfills (R2) , 1i.e.
m(p v p’) =1, so that (6) is fulfilled.

Let {“i}iel be a sequence of pairwise W -separated fuzzy
subsets of cﬁ , U By € a: . Then My are also pairwvise

I
m -separated. Now, we can repeat the ideas of the proof of the

Theorem 3.2. to get (7) , i.e. m( v ui) =¥ m(ui)
I I
It follows that m is a fuzzy P -measure on 62

Theorem 3.4. Let m be a fuzzy probability measure on a fuzzy
o —algebra o. Then wz is the greatest fuzzy sub -algebra of o

possessing the property that m is a fuzzy P -measure on it.

Proof. It suffices to prove that if m is a fuzzy P -measure on a

m .
fuzzy sub -algebra o, c o then o C o, » l.e. for every u € o

m(pup') =1 and m(p np’) = 0. The first property is obvious
from (6). (7) that )

m(p v p')=m(p) + m(p’) (18)
From the valuation property (2) we have

m(p up) +mnlpnpg)=mnp+np) (19)
It follows m(p np’) =0 g.e.d.



Remark. In general oﬁ c aw = vi. The equality occurs iff the

W -Bayes formula holds on am . On the other hand, Theorem 3.4.
implies that 02 is the greatest fuzzy sub -algebra of ¢ on which
the W -Bayes formula holds. So on a: all three concepts m - , F -

and W - coincide.

Example 3.2. Let m be a symetric fuzzy probability measure on a
fuzzy o -algebra o ( see e.g. [2] ), i.e. V p € o :

» — - m _ W
m(p’) =1 m(p). Then o= %
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